make_blobs函数
make_blobs 是 scikit-learn 库中用于生成聚类(或分类)数据集的函数。它通常用于生成多个高斯分布的簇状数据,以便进行分类或聚类算法的测试和验证。make_blobs 非常灵活,可以控制簇的数量、样本数量、每个簇的标准差、中心点等参数。
函数原型
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=None, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)
参数说明
-
n_samples:生成的样本数量(默认 100)。可以是整数(总样本数),也可以是列表(每个簇的样本数)。
- 例如:
n_samples=300表示生成 300 个样本,或者n_samples=[100, 200, 50]分别为每个簇生成的样本数量。
- 例如:
-
n_features:每个样本的特征数(默认 2)。表示每个生成的样本有多少个特征(即维度)。
- 例如:
n_features=2生成二维数据,可以在平面上画出;n_features=3生成三维数据。
- 例如:
-
centers:簇的数量,或者簇的中心坐标。可以是整数,表示生成多少个簇,或者是一个数组,指定每个簇的中心点。
- 例如:
centers=3会随机生成 3 个簇;centers=[[0,0], [1,1], [2,2]]会在指定坐标上生成簇。
- 例如:
-
cluster_std:每个簇的标准差(默认 1.0),可以是单个浮点数(表示所有簇的标准差相同),也可以是列表,表示每个簇的标准差。
- 例如:
cluster_std=1.0为所有簇生成的样本点离中心的标准差为 1.0;cluster_std=[1.0, 2.0, 0.5]表示每个簇的离散程度不同。
- 例如:
-
center_box:中心点生成的范围(默认 (-10.0, 10.0))。用于生成随机簇中心的坐标范围。可以通过调整此参数来控制簇中心的范围。
-
shuffle:是否打乱生成的数据(默认
True)。在生成数据后,是否对数据进行随机排序。 -
random_state:随机数种子,用于确保每次生成的簇相同。可以是整数(指定种子),
None(不设置种子,每次生成不同),或np.random.RandomState对象。
返回值
- X:生成的样本数据(特征矩阵),形状为
(n_samples, n_features)。 - y:生成的样本标签(簇标签),形状为
(n_samples,)。
示例
1. 生成简单的 2D 数据集
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成数据集
X, y = make_blobs(n_samples=300, centers=3, n_features=2, random_state=42)# 绘制生成的数据
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis')
plt.show()
在这个示例中,make_blobs 生成了 300 个二维样本,分为 3 个簇。然后我们使用 Matplotlib 绘制数据集,不同簇以不同颜色显示。
2. 指定簇的中心和标准差
X, y = make_blobs(n_samples=300, centers=[[1, 1], [5, 5], [9, 9]], cluster_std=[0.5, 1.0, 2.0], random_state=42)plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis')
plt.show()
在这个例子中,我们手动指定了 3 个簇的中心,分别为 [1, 1]、[5, 5] 和 [9, 9],同时指定了每个簇的标准差为 0.5、1.0 和 2.0。
3. 生成高维数据
X, y = make_blobs(n_samples=500, centers=4, n_features=3, random_state=42)print(X.shape) # (500, 3)
在这个例子中,生成了 500 个样本,每个样本有 3 个特征(即三维数据)。生成的数据可以用于三维可视化或其他高维数据处理。
4. 用于分类和聚类
make_blobs 常常用于生成聚类或分类问题的数据集,尤其适合在初学者的实验和测试中使用。例如,可以用来测试 K-Means 算法、支持向量机(SVM)分类器等。
总结
make_blobs是一个非常方便的工具,用于生成模拟的簇状数据。- 它允许我们控制簇的数量、中心、样本数量、标准差等,灵活生成各种聚类数据。
- 在机器学习实验中,它常常用于测试聚类或分类算法。
相关文章:
make_blobs函数
make_blobs 是 scikit-learn 库中用于生成聚类(或分类)数据集的函数。它通常用于生成多个高斯分布的簇状数据,以便进行分类或聚类算法的测试和验证。make_blobs 非常灵活,可以控制簇的数量、样本数量、每个簇的标准差、中心点等参…...
特斯拉Optimus:展望智能生活新篇章
近日,特斯拉举办了 "WE ROBOT" 发布会,发布会上描绘的未来社会愿景,让无数人为之向往。在这场吸引全球无数媒体的直播中,特斯拉 Optimus 人形机器人一出场就吸引了所有观众的关注。从多家媒体现场拍摄的视频可以看出来&…...
基于Leaflet和SpringBoot的全球国家综合检索WebGIS可视化
目录 前言 一、Java后台程序设计 1、业务层设计 2、控制层设计 二、WebGIS可视化实现 1、侧边栏展示 2、空间边界信息展示 三、标注成果展示 1、面积最大的国家 2、国土面积最小的国家 3、海拔最低的国家 4、最大的群岛国家 四、总结 前言 在前面的博文中ÿ…...
【Linux】/usr/share目录
在Linux和类Unix操作系统中,/usr/share 目录是一个用于存放共享数据文件的目录。这个目录遵循Filesystem Hierarchy Standard (FHS),它定义了Linux系统中文件和目录的组织结构。/usr 代表 “user”,而 share 表示这些文件可以被系统上的多个用…...
Java中如何应用序列化 serialVersionUID 版本号呢?
文章目录 示例1:没有 serialVersionUID 的类输出结果:示例2:类修改后未定义 serialVersionUID可能出现的问题:示例3:显式定义 serialVersionUID总结最佳实践推荐阅读文章 为了更好地理解 serialVersionUID 的使用&…...
面部识别技术:AI 如何识别人脸
在科技飞速发展的今天,面部识别技术已经广泛应用于各个领域,从手机解锁到安防监控,从金融支付到门禁系统,面部识别技术正在改变着我们的生活方式。那么,AI 究竟是如何识别人脸的呢?让我们一起来揭开面部识别…...
全面解析文档对象模型(DOM)及其操作(DOM的概念与结构、操作DOM节点、描述DOM树的形成过程、用DOMParser解析字符串为DOM对象)
1. 引言 文档对象模型(DOM)是Web开发中的核心概念,它提供了一种结构化的方法来表示和操作HTML和XML文档。通过DOM,开发者可以动态地访问和更新文档的内容、结构和样式。本文将深入探讨DOM的概念与结构、操作DOM节点的方法、DOM树…...
字符串使用方法:
字符串: -- 拼接字符串 SELECT CONCAT(糯米,啊啊啊撒,删掉); -- 字符长度 SELECT LENGTH(asssssssggg); -- 转大写 SELECT UPPER(asdf); -- 转小写 SELECT LOWER(ASDFG); -- 去除左边空格 SELECT LTRIM( aaaasdrf ); -- 去除右边空格 SELECT RTRIM( aaaasdff ); -- 去除两端…...
想让前后端交互更轻松?alovajs了解一下?
作为一个前端开发者,我最近发现了一个超赞的请求库 alovajs,它真的让我眼前一亮!说实话,我感觉自己找到了前端开发的新大陆。大家知道,在前端开发中,处理 Client-Server 交互一直是个老大难的问题ÿ…...
E/MicroMsg.SDK.WXMediaMessage:checkArgs fail,thumbData is invalid 图片资源太大导致分享失败
1、微信分享报: 2、这个问题是因为图片太大导致: WXWebpageObject webpage new WXWebpageObject();webpage.webpageUrl qrCodeUrl;//用 WXWebpageObject 对象初始化一个 WXMediaMessage 对象WXMediaMessage msg new WXMediaMessage(webpage);msg.tit…...
No.21 笔记 | WEB安全 - 任意文件绕过详解 part 3
(一)空格绕过 原理 Windows系统将文件名中的空格视为空,但程序检测代码无法自动删除空格,使攻击者可借此绕过黑名单限制。基于黑名单验证的代码分析 代码未对上传文件的文件名进行去空格处理,存在安全隐患。相关代码逻…...
咸鱼自动发货 免费无需授权
下载:(两个都可以下,自己选择) https://pan.quark.cn/s/1e3039e322ad https://pan.xunlei.com/s/VO9ww89ZNkEg_Fq1wRr-fk9ZA1?pwd8x9s# 不是闲管家 闲鱼自动发货(PC端) 暂不支持密,免费使…...
Netty核心组件
1.Channel Channel可以理解为是socket连接,在客户端与服务端连接的时候就会建立一个Channel,它负责基本的IO操作(binf()、connect()、rad()、write()等); 1.1 Channel的作用 通过Channel可获得当前网络连接的通道状态…...
Windows中如何安装SSH
主要内容 一、参考资料二、主要过程法一:通过「设置」安装法二:使用 PowerShell进行安装在 Windows 中配置 OpenSSH 服务器过程截图 一、参考资料 Windows10 打开ssh服务,报错“The service name is invalid ” windows开启ssh服务教程 在 W…...
在linux上部署ollama+open-webu,且局域网访问教程
在linux上部署ollamaopen-webu,且局域网访问教程 运行ollamaopen-webui安装open-webui (待实现)下一期将加入内网穿透,实现外网访问功能 本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并使用Op…...
基于大模型的招聘智能体:从创意到MVP
正在考虑下一个 SaaS 创意?以下是我在短短几个小时内从创意到 MVP 的过程。 以下是我将在这篇文章中介绍的内容概述: 为什么这个想法让我产生共鸣我是如何开始构建它的我现在的处境以及我是否会真正推出 获得 SaaS 创意并构建它并不容易。就是这样。 …...
STM32F1+HAL库+FreeTOTS学习19——软件定时器
STM32F1HAL库FreeTOTS学习19——软件定时器 1 软件定时器1.1 FreeRTOS软件定时器简介1.2 FreeRTOS软件定时器服务任务1.3 FreeRTOS软件定时器服命令队列。1.4 软件定时器的状态1.5 复位定时器1.6 软件定时器结构体 2 软件定时器配置3 软件定时器API函数3.1 xTimerCreate()和xTi…...
@RequestBody的详解和使用
RequestBody的详解和使用 提示:建议一定要看后面的RequestBody的核心逻辑源码以及六个重要结论!本文前半部分的内容都是一些基- 本知识常识,可选择性跳过。 声明:本文是基于SpringBoot,进行的演示说明。 基础知识介…...
VMware介绍及常见使用方法
VMware 是一家全球知名的虚拟化和云计算软件提供商。以下是关于 VMware 的详细介绍: 一、主要产品和功能 VMware vSphere 服务器虚拟化平台,允许将物理服务器虚拟化为多个虚拟机(VM)。提供高可用性、资源管理、动态迁移等功能,确保业务的连续性和高效性。通过集中管理控制…...
Deepinteraction 深度交互:通过模态交互的3D对象检测
一.前提 为什么要采用跨模态的信息融合? 点云在低分辨率下提供必要的定位和几何信息,而图像在高分辨率下提供丰富的外观信息。 -->因此必须采用跨模态的信息融合 提出的原因? 传统的融合办法可能会由于信息融合到统一表示中的不太完美而丢失很大一部分特定…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
