当前位置: 首页 > news >正文

PyTorch求导相关

PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果;而TensorFlow是静态图。

在pytorch的计算图里只有两种元素:数据(tensor)和 运算(operation)

运算包括了:加减乘除、开方、幂指对、三角函数等可求导运算

数据可分为:叶子节点(leaf node)和非叶子节点;叶子节点是用户创建的节点,不依赖其它节点;它们表现出来的区别在于反向传播结束之后,非叶子节点的梯度会被释放掉,只保留叶子节点的梯度,这样就节省了内存。如果想要保留非叶子节点的梯度,可以使用retain_grad()方法。

torch.tensor 具有如下属性:

  • 查看 是否可以求导 requires_grad
  • 查看 运算名称 grad_fn
  • 查看 是否为叶子节点 is_leaf
  • 查看 导数值 grad

针对requires_grad属性,自己定义的叶子节点默认为False,而非叶子节点默认为True,神经网络中的权重默认为True。判断哪些节点是True/False的一个原则就是从你需要求导的叶子节点到loss节点之间是一条可求导的通路。

当我们想要对某个Tensor变量求梯度时,需要先指定requires_grad属性为True,指定方式主要有两种:

x = torch.tensor(1.).requires_grad_() # 第一种x = torch.tensor(1., requires_grad=True) # 第二种

PyTorch提供两种求梯度的方法:backward() and torch.autograd.grad() ,他们的区别在于前者是给叶子节点填充.grad字段,而后者是直接返回梯度给你,我会在后面举例说明。还需要知道y.backward()其实等同于torch.autograd.backward(y)

一个简单的求导例子是:y=(x+1)∗(x+2) ,计算 ∂y/∂x ,假设给定 x=2
先画出计算图

手算:∂y/∂x=(x+2)*1+(x+1)*1->7

使用backward()

x = torch.tensor(2., requires_grad=True)a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)y.backward()
print(x.grad)
>>>tensor(7.)

看一下这几个tensor的属性

print("requires_grad: ", x.requires_grad, a.requires_grad, b.requires_grad, y.requires_grad)
print("is_leaf: ", x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
print("grad: ", x.grad, a.grad, b.grad, y.grad)>>>requires_grad:  True True True True
>>>is_leaf:  True False False False
>>>grad:  tensor(7.) None None None

使用backward()函数反向传播计算tensor的梯度时,并不计算所有tensor的梯度,而是只计算满足这几个条件的tensor的梯度:1.类型为叶子节点、2.requires_grad=True、3.依赖该tensor的所有tensor的requires_grad=True。所有满足条件的变量梯度会自动保存到对应的grad属性里。

使用autograd.grad()

x = torch.tensor(2., requires_grad=True)a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)grad = torch.autograd.grad(outputs=y, inputs=x)
print(grad[0])
>>>tensor(7.)

因为指定了输出y,输入x,所以返回值就是 ∂x/∂y 这一梯度,完整的返回值其实是一个元组,保留第一个元素就行,后面元素是

二阶求导

求一阶导可以用backward()

x = torch.tensor(2., requires_grad=True)
y = torch.tensor(3., requires_grad=True)z = x * x * yz.backward()
print(x.grad, y.grad)
>>>tensor(12.) tensor(4.)

也可以用autograd.grad()

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x)
print(grad_x[0])
>>>tensor(12.)

为什么不在这里面同时也求对y的导数呢?因为无论是backward还是autograd.grad在计算一次梯度后图就被释放了,如果想要保留,需要添加retain_graph=True

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_y = torch.autograd.grad(outputs=z, inputs=y)print(grad_x[0], grad_y[0])
>>>tensor(12.) tensor(4.) 

再来看如何求高阶导,理论上其实是上面的grad_x再对x求梯度,试一下看

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)print(grad_xx[0])
>>>RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

报错了,虽然retain_graph=True保留了计算图和中间变量梯度, 但没有保存grad_x的运算方式,需要使用creat_graph=True在保留原图的基础上再建立额外的求导计算图,也就是会把 ∂z/∂x=2xy 这样的运算存下来

# autograd.grad() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad_x = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)print(grad_xx[0])
>>>tensor(6.)

grad_xx这里也可以直接用backward(),相当于直接从 ∂z/∂x=2xy 开始回传

# autograd.grad() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * ygrad = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad[0].backward()print(x.grad)
>>>tensor(6.)

 也可以先用backward()然后对x.grad这个一阶导继续求导

# backward() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True)
grad_xx = torch.autograd.grad(outputs=x.grad, inputs=x)print(grad_xx[0])
>>>tensor(6.)

那是不是也可以直接用两次backward()呢?第二次直接x.grad从开始回传,我们试一下

# backward() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True) # x.grad = 12
x.grad.backward()print(x.grad)
>>>tensor(18., grad_fn=<CopyBackwards>)

发现了问题,结果不是6,而是18,发现第一次回传时输出x梯度是12。这是因为PyTorch使用backward()时默认会累加梯度,需要手动把前一次的梯度清零

x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()z = x * x * yz.backward(create_graph=True)
x.grad.data.zero_()
x.grad.backward()print(x.grad)
>>>tensor(6., grad_fn=<CopyBackwards>)

向量求导

有没有发现前面都是对标量求导,如果不是标量会怎么样呢?

x = torch.tensor([1., 2.]).requires_grad_()
y = x + 1y.backward()
print(x.grad)
>>>RuntimeError: grad can be implicitly created only for scalar outputs

x = torch.tensor([1., 2.]).requires_grad_()
y = x * xy.sum().backward()
print(x.grad)
>>>tensor([2., 4.])

相关文章:

PyTorch求导相关

PyTorch是动态图&#xff0c;即计算图的搭建和运算是同时的&#xff0c;随时可以输出结果&#xff1b;而TensorFlow是静态图。 在pytorch的计算图里只有两种元素&#xff1a;数据&#xff08;tensor&#xff09;和 运算&#xff08;operation&#xff09; 运算包括了&#xf…...

Halcon基础-瓶盖带角度的OCR批量识别

Halcon基础-OCR识别 1、OCR识别素材2、创建路径文件3、Halcon代码实现4、运行效果5、资源获取 1、OCR识别素材 这里我准备了7张不同角度的OCR图片&#xff0c;如下所示&#xff1a; 2、创建路径文件 按照下图所示创建全部文件夹和文件&#xff1a; 01用来存放OCR识别原图 c…...

php语法学习

启动php 进入软件 打开文件&#xff1a;编写代码 $php true; $java false; var_dump($php);//输出变量细节 var_dump($java) 字符串 注意可以使用双引号也可以使用单引号 测试 $php "最好学web语言"; $java 脱胎于c语言; var_dump($php);//输出变量细节 var…...

JavaWeb合集22-Apache POI

二十二、Apache POI Apache POI是一个处理Miscrosoft Office各种文件格式的开源项目。简单来说就是&#xff0c;我们可以使用POI在Java 序中对Miscrosoft Office各种文件进行读写操作。一般情况下&#xff0c;POI都是用于操作Excel文件。 使用场景&#xff1a;银行网银系统导出…...

DDD重构-实体与限界上下文重构

DDD重构-实体与限界上下文重构 概述 DDD 方法需要不同类型的类元素&#xff0c;例如实体或值对象&#xff0c;并且几乎所有这些类元素都可以看作是常规的 Java 类。它们的总体结构是 Name: 类的唯一名称 Properties&#xff1a;属性 Methods: 控制变量的变化和添加行为 一…...

MATLAB Simulink (二)高速跳频通信系统

MATLAB & Simulink &#xff08;二&#xff09;高速跳频通信系统 写在前面1 系统原理1.1 扩频通信系统理论基础1.1.1 基本原理1.1.2 扩频通信系统处理增益和干扰容限1.1.3 各种干扰模式下抗干扰性能 1.2 高速跳频通信系统理论基础1.2.1 基本原理1.2.2 物理模型 2 方案设计2…...

智能合约分享

智能合约练习 一、solidity初学者经典示例代码&#xff1a; 1.存储和检索数据&#xff1a; // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // 声明 Solidity 编译器版本// 定义一个名为 SimpleStorage 的合约 contract SimpleStorage {// 声明一个公共状态变量 d…...

【MR开发】在Pico设备上接入MRTK3(二)——在Unity中配置Pico SDK

上一篇文档介绍了 【MR开发】在Pico设备上接入MRTK3&#xff08;一&#xff09;在Unity中导入MRTK3依赖 下面将介绍在Unity中导入Pcio SDK的具体步骤 在Unity中导入Pico SDK 当前Pico SDK版本 Unity交互SDK git仓库&#xff1a; https://github.com/Pico-Developer/PICO-Un…...

【Java】探秘正则表达式:深度解析与精妙运用

目录 引言 一、基本概念 1.1 元字符 1.2 预定义字符类 1.3 边界匹配符 1.4 数量标识符 1.5 捕获与非捕获分组 二、Java中的正则表达式支持 三、正则表达式的使用示例 3.1 匹配字符串 3.2 替换字符串 3.3 分割字符串 3.4 使用Pattern和Matcher 3.5 捕获组和后向…...

2.6.ReactOS系统中从内核中发起系统调用

2.6.ReactOS系统中从内核中发起系统调用 2.6.ReactOS系统中从内核中发起系统调用 文章目录 2.6.ReactOS系统中从内核中发起系统调用前言 前言 上面我们已经可以看到用户空间&#xff08;R3&#xff09;进行系统调用的全过程即两种方法的具体实现。 系统调用一般时从R3发起的…...

chat_gpt回答:python获取当前utc时间,将xml里时间tag里的值修改为当前时间

你可以使用 lxml 库来读取、修改 XML 文件中的某个标签的值&#xff0c;并将其保存为新的 XML 文件。以下是一个示例代码&#xff0c;展示如何获取当前的 UTC 时间&#xff0c;并将 XML 文件中的某个时间标签修改为当前时间。 示例代码&#xff1a; from lxml import etree f…...

机器学习-语言分析

机器学习 1.1人工智能概述 1.2.1 机器学习与人工智能&#xff0c;深度学习 深度学习->机器学习->人工智能&#xff1b; 人工智能&#xff1a;1950&#xff0c;实现自动下棋&#xff0c;人机对弈&#xff0c;达特茅斯会议->人工智能的起点&#xff0c;1956年8月。克劳…...

Oracle 常见索引扫描方式概述,哪种索引扫描最快!

一.常见的索引扫描方式 INDEX RANGE SCANINDEX FAST FULL SCANINDEX FULL SCAN(MIN/MAX)INDEX FULL SCAN 二.分别模拟使用这些索引的场景 1.INDEX RANGE SCAN create table t1 as select rownum as id, rownum/2 as id2 from dual connect by level<500000; create inde…...

字符串(3)_二进制求和_高精度加法

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 字符串(3)_二进制求和_高精度加法 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目…...

《神经网络:智能时代的核心技术》

《神经网络&#xff1a;智能时代的核心技术》 一、神经网络的诞生与发展二、神经网络的结构与工作原理&#xff08;一&#xff09;神经元模型&#xff08;二&#xff09;神经网络训练过程 三、神经网络的应用领域&#xff08;一&#xff09;信息领域&#xff08;二&#xff09;…...

pdf内容三张以上转图片,使用spire.pdf.free

一、依赖 <spire.pdf.free.version>9.13.0</spire.pdf.free.version><itextpdf.version>5.5.13</itextpdf.version><dependency><groupId>e-iceblue</groupId><artifactId>spire.pdf.free</artifactId><version>$…...

游戏、软件、开源项目和资讯

游戏 标题链接【白嫖正版游戏】IT之家喜加一website 软件 标题链接【白嫖正版软件】反斗限免website 开源项目 标题链接【Luxirty Search】基于Google搜索结果&#xff0c;屏蔽内容农场Github【Video2X】图片/视频超分工具Github 新闻资讯 标题链接分享10个 Claude 3.5 …...

Acrel-1000变电站综合自动化系统及微机在化工企业中的应用方案

文&#xff1a;安科瑞郑桐 摘要&#xff1a;大型化工企业供配电具有的集约型特点&#xff0c;化工企业内35kV变电站和10kV变电所数量大、分布广&#xff0c;对于老的大多大型及中型化工企业而言&#xff0c;其变电站或变电所内高压电气设备为旧式继电保护装置&#xff0c;可靠…...

[Linux] CentOS7替换yum源为阿里云并安装gcc详细过程(附下载链接)

前言 CentOS7替换yum源为阿里云 yum是CentOS中的一种软件管理器&#xff0c;通过yum安装软件&#xff0c;可以自动解决包依赖的问题&#xff0c;免去手工安装依赖包的麻烦。 yum使用了一个中心仓库来记录和管理软件的依赖关系&#xff0c;默认为mirrorlist.centos.org&#xf…...

在Java中创建多线程的三种方式

多线程的创建和启动方式 在Java中&#xff0c;创建多线程主要有以下三种方式&#xff1a; 继承Thread类实现Runnable接口使用Callable接口与Future 下面是这三种方式的简单示例&#xff0c;以及如何在主类中启动它们。 1. 继承Thread类 class MyThread extends Thread {Ov…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

[特殊字符] 手撸 Redis 互斥锁那些坑

&#x1f4d6; 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作&#xff0c;想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁&#xff0c;也顺便跟 Redisson 的 RLock 机制对比了下&#xff0c;记录一波&#xff0c;别踩我踩过…...

精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑

精益数据分析&#xff08;98/126&#xff09;&#xff1a;电商转化率优化与网站性能的底层逻辑 在电子商务领域&#xff0c;转化率与网站性能是决定商业成败的核心指标。今天&#xff0c;我们将深入解析不同类型电商平台的转化率基准&#xff0c;探讨页面加载速度对用户行为的…...