Spark教程5-基本结构化操作
加载csv文件
df = spark.read.format("json").load("/data/flight-data/json/2015-summary.json")
Schema
输出Schema
df.printSchema()
使用Schema读取csv文件,以指定数据类型
from pyspark.sql.types import StructField, StructType, StringType, LongTypemySchema = StructType([StructField("DEST_COUNTRY_NAME", StringType(), True),StructField("ORIGIN_COUNTRY_NAME", StringType(), True),StructField("count", LongType(), False)]
)
df = spark.read.format("json").schema(mySchema).load("/Users/yangyong/dev/learn_spark/2015-summary.json")
行
获取第一行
df.first()
创建行
from pyspark.sql import RowmyRow = Row("Hello", None, 1, False)
创建DataFrames
加载csv文件为DataFrames
df = spark.read.format("json").load("/data/flight-data/json/2015-summary.json")
合并Schema和Rows为DataFrames
Schema1 = StructType([StructField("id", StringType(), True),StructField("name", StringType(), True),StructField("country", StringType(), True)]
)row1 = Row('1', 'Oscar', 'United States')
row2 = Row('2', 'China', 'England')
myDF = spark.createDataFrame([row1, row2], schema=Schema1)
myDF.show()"""
+---+-----+-------------+
| id| name| country|
+---+-----+-------------+
| 1|Oscar|United States|
| 2|China| England|
+---+-----+-------------+
"""
两种查询:select和selectExpr
select
from pyspark.sql.functions import expr, col, columndf.select('dest_country_name').show(2)
df.select('dest_country_name', 'origin_country_name').show(2)
df.select(expr('dest_country_name'), col('dest_country_name'), column('dest_country_name')).show(2)"""
+-----------------+
|dest_country_name|
+-----------------+
| United States|
| United States|
+-----------------+
only showing top 2 rows+-----------------+-------------------+
|dest_country_name|origin_country_name|
+-----------------+-------------------+
| United States| Romania|
| United States| Croatia|
+-----------------+-------------------+
only showing top 2 rows+-----------------+-----------------+-----------------+
|dest_country_name|dest_country_name|dest_country_name|
+-----------------+-----------------+-----------------+
| United States| United States| United States|
| United States| United States| United States|
+-----------------+-----------------+-----------------+
only showing top 2 rows
"""
列重命名
df.select(expr('dest_country_name as destination')).show(2)
df.select(col('dest_country_name').alias('destination')).show(2)"""
+-------------+
| destination|
+-------------+
|United States|
|United States|
+-------------+
only showing top 2 rows+-------------+
| destination|
+-------------+
|United States|
|United States|
+-------------+
only showing top 2 rows
"""
selectExpr
列重命名
df.selectExpr('dest_country_name as destination', 'dest_country_name').show(2)"""
+-------------+-----------------+
| destination|dest_country_name|
+-------------+-----------------+
|United States| United States|
|United States| United States|
+-------------+-----------------+
only showing top 2 rows
"""
新增列
df.selectExpr('*', '(dest_country_name = origin_country_name) as withinCountry').show(2)"""
+-----------------+-------------------+-----+-------------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|withinCountry|
+-----------------+-------------------+-----+-------------+
| United States| Romania| 15| false|
| United States| Croatia| 1| false|
+-----------------+-------------------+-----+-------------+
only showing top 2 rows
"""
相当于SQL
SELECT *, (dest_country_name = origin_country_name) as withinCountry
FROM dfTable limit 2
使用聚合函数
df.selectExpr('avg(count)', 'count(distinct(dest_country_name))').show(2)"""
+-----------+---------------------------------+
| avg(count)|count(DISTINCT dest_country_name)|
+-----------+---------------------------------+
|1770.765625| 132|
+-----------+---------------------------------+
"""
添加列 withColumn
from pyspark.sql.functions import litdf.withColumn('numberOne', lit(1)).show(2)
df.withColumn('withinCountry', expr('dest_country_name == origin_country_name')).show(2)"""
+-----------------+-------------------+-----+---------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|numberOne|
+-----------------+-------------------+-----+---------+
| United States| Romania| 15| 1|
| United States| Croatia| 1| 1|
+-----------------+-------------------+-----+---------+
only showing top 2 rows+-----------------+-------------------+-----+-------------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|withinCountry|
+-----------------+-------------------+-----+-------------+
| United States| Romania| 15| false|
| United States| Croatia| 1| false|
+-----------------+-------------------+-----+-------------+
only showing top 2 rows
"""
列重命名 withColumnRenamed
df.withColumnRenamed('dest_country_name', 'dest').show(2)"""
+-------------+-------------------+-----+
| dest|ORIGIN_COUNTRY_NAME|count|
+-------------+-------------------+-----+
|United States| Romania| 15|
|United States| Croatia| 1|
+-------------+-------------------+-----+
only showing top 2 rows
"""
去掉列
df.drop('origin_country_name').show(2)
"""
+-----------------+-----+
|DEST_COUNTRY_NAME|count|
+-----------------+-----+
| United States| 15|
| United States| 1|
+-----------------+-----+
only showing top 2 rows
"""
修改列类型
df.withColumn('count2', col('count').cast('long'))
行过滤 filter/where
这两者是等价的
df.filter('count < 2').show(2)
df.where('count < 2').show(2)
df.where(col('count') < 2).show(2)"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows
"""
多个条件过滤
df.where('count < 2').where('dest_country_name != "United States"').show(2)"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| Moldova| United States| 1|
| Malta| United States| 1|
+-----------------+-------------------+-----+
only showing top 2 rows
"""
去重
df.select('dest_country_name', 'origin_country_name').distinct().count()"""
equal to SQL:
SELECT COUNT(DISTINCT(dest_country_name, origin_country_name)) FROM dfTable;
"""
合并DataFrames
拥有同样的Schema以及columns才能合并
from pyspark.sql import Row
schema = df.schema
newRows = [Row("New Country", "Other Country", 5),Row("New Country 2", "Other Country 3", 1)
]
newDF = spark.createDataFrame(newRows, schema)# in Python
df.union(newDF)\.where("count = 1")\.where(col("ORIGIN_COUNTRY_NAME") != "United States")\.show()
"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
| United States| Gibraltar| 1|
| United States| Cyprus| 1|
| United States| Estonia| 1|
| United States| Lithuania| 1|
| United States| Bulgaria| 1|
| United States| Georgia| 1|
| United States| Bahrain| 1|
| United States| Papua New Guinea| 1|
| United States| Montenegro| 1|
| United States| Namibia| 1|
| New Country 2| Other Country 3| 1|
+-----------------+-------------------+-----+
"""
行排序 sort/orderBy
两种方式等价
df.sort("count").show(5)
df.orderBy("count", "DEST_COUNTRY_NAME").show(5)
df.orderBy(col("count"), col("DEST_COUNTRY_NAME")).show(5)from pyspark.sql.functions import desc, ascdf.orderBy(expr("count desc")).show(2)
df.orderBy(col("count").desc(), col("DEST_COUNTRY_NAME").asc()).show(2)
Limit
df.limit(5).show()
df.orderBy(expr("count desc")).limit(6).show()
相关文章:
Spark教程5-基本结构化操作
加载csv文件 df spark.read.format("json").load("/data/flight-data/json/2015-summary.json")Schema 输出Schema df.printSchema()使用Schema读取csv文件,以指定数据类型 from pyspark.sql.types import StructField, StructType, Strin…...

内置数据类型、变量名、字符串、数字及其运算、数字的处理、类型转换
内置数据类型 python中的内置数据类型包括:整数、浮点数、布尔类型(以大写字母开头)、字符串 变量名 命名变量要见名知意,确保变量名称具有描述性和意义,这样可以使得代码更容易维护,使用_可以使得变量名…...
Win/Mac/Android/iOS怎麼刪除代理設置?
設置代理設置的主要構成 IP 地址和端口 這些是代理伺服器配置的最基本組件。代理伺服器的IP地址引導互聯網流量,而端口號指定伺服器上的通信通道。 為什麼要刪除代理設置? 刪除代理設置通常是為了解決網路問題、提高速度、恢復安全性或過渡到新的網路…...

数据结构------手撕顺序表
文章目录 线性表顺序表的使用及其内部方法ArrayList 的扩容机制顺序表的几种遍历方式顺序表的优缺点顺序表的模拟实现洗牌算法 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,…...

UDP(用户数据报协议)端口监控
随着网络的扩展,确保高效的设备通信对于优化网络功能变得越来越重要。在这个过程中,端口发挥着重要作用,它是实现外部设备集成的物理连接器。通过实现数据的无缝传输和交互,端口为网络基础设施的顺畅运行提供了保障。端口使数据通…...

【Java小白图文教程】-05-数组和排序算法详解
精品专题: 01.《C语言从不挂科到高绩点》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. 《SpringBoot详细教程》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12789841.html?spm1001.20…...

OpenCV视觉分析之目标跟踪(1)计算密集光流的类DISOpticalFlow的介绍
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 这个类实现了 Dense Inverse Search (DIS) 光流算法。更多关于该算法的细节可以在文献 146中找到。该实现包含了三个预设参数集,以提…...

Lucas带你手撕机器学习——套索回归
好的,下面我将详细介绍套索回归的背景、理论基础、实现细节以及在实践中的应用,同时还会讨论其优缺点和一些常见问题。 套索回归(Lasso Regression) 1. 背景与动机 在机器学习和统计学中,模型的复杂性通常会影响其在…...

面试中的一个基本问题:如何在数据库中存储密码?
面试中的一个基本问题:如何在数据库中存储密码? 在安全面试中,“如何在数据库中存储密码?”是一个基础问题,但反映了应聘者对安全最佳实践的理解。以下是安全存储密码的最佳实践概述。 了解风险 存储密码必须安全&am…...
XML HTTP Request
XML HTTP Request 简介 XMLHttpRequest(XHR)是一个JavaScript对象,它最初由微软设计,并在IE5中引入,用于在后台与服务器交换数据。它允许网页在不重新加载整个页面的情况下更新部分内容,这使得网页能够实现动态更新,大大提高了用户体验。虽然名字中包含“XML”,但XML…...

TLS协议基本原理与Wireshark分析
01背 景 随着车联网的迅猛发展,汽车已经不再是传统的机械交通工具,而是智能化、互联化的移动终端。然而,随之而来的是对车辆通信安全的日益严峻的威胁。在车联网生态系统中,车辆通过无线网络与其他车辆、基础设施以及云端服务进行…...
当遇到 502 错误(Bad Gateway)怎么办
很多安装雷池社区版的时候,配置完成,访问的时候可能会遇到当前问题,如何解决呢? 客户端,浏览器排查 1.刷新页面和清除缓存 首先尝试刷新页面,因为有时候 502 错误可能是由于网络临时波动导致服务器无法连…...
学习记录:js算法(七十五): 加油站
文章目录 加油站思路一思路二思路三思路四思路五 加油站 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发…...

强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断
强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断 目录 强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断效果一览基本介绍程序设计参考资料 效果一览 基本介绍 EEMD-MPE-KPCA-LSTM(集合经验模态分解-多尺…...

yarn的安装与使用以及与npm的区别(安装过程中可能会遇到的问题)
一、yarn的安装 使用npm就可以进行安装 但是需要注意的一点是yarn的使用和node版本是有关系的必须是16.0以上的版本。 输入以下代码就可以实现yarn的安装 npm install -g yarn 再通过版本号的检查来确定,yarn是否安装成功 yarn -v二、遇到的问题 1、问题描述…...

大数据行业预测
大数据行业预测 编译 李升伟 和所有预测一样,我们必须谨慎对待这些预测,因为其中一些预测可能成不了事实。当然,真正改变游戏规则的创新往往出乎意料,甚至让最警惕的预言家也措手不及。所以,如果在来年发生了一些惊天…...
可能是NextJs(使用ssr、api route)打包成桌面端(nextron、electron、tauri)的最佳解决方式
可能是NextJs(使用ssr、api route)打包成桌面端(nextron、electron、tauri)的最佳解决方式 前言 在我使用nextron(nextelectron)写了一个项目后打包发现nextron等一系列桌面端框架在生产环境是不支持next的ssr也就是api route功能的这就导致我非常难受&…...

二百七十、Kettle——ClickHouse中增量导入清洗数据错误表
一、目的 比如原始数据100条,清洗后,90条正确数据在DWD层清洗表,10条错误数据在DWD层清洗数据错误表,所以清洗数据错误表任务一定要放在清洗表任务之后。 更关键的是,Hive中原本的SQL语句,放在ClickHouse…...
CentOS6升级OpenSSH9.2和OpenSSL3
文章目录 1.说明2.下载地址3.升级OpenSSL4.安装telnet 服务4.1.安装 telnet 服务4.2 关闭防火墙4.2.使用 telnet 连接 5.升级OpenSSH5.1.安装相关命令依赖5.2.备份原 ssh 配置5.3.卸载原有的 OpenSSH5.4.安装 OpenSSH5.5.修改 ssh 配置文件5.6关闭 selinux5.7.重启 OpenSSH 1.说…...

2024 年 MathorCup 数学应用挑战赛——大数据竞赛-赛道 A:台风的分类与预测
2024年MathorCup大数据挑战赛-赛道A初赛--思路https://download.csdn.net/download/qq_52590045/89922904↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...

windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...