Spark教程5-基本结构化操作
加载csv文件
df = spark.read.format("json").load("/data/flight-data/json/2015-summary.json")
Schema
输出Schema
df.printSchema()
使用Schema读取csv文件,以指定数据类型
from pyspark.sql.types import StructField, StructType, StringType, LongTypemySchema = StructType([StructField("DEST_COUNTRY_NAME", StringType(), True),StructField("ORIGIN_COUNTRY_NAME", StringType(), True),StructField("count", LongType(), False)]
)
df = spark.read.format("json").schema(mySchema).load("/Users/yangyong/dev/learn_spark/2015-summary.json")
行
获取第一行
df.first()
创建行
from pyspark.sql import RowmyRow = Row("Hello", None, 1, False)
创建DataFrames
加载csv文件为DataFrames
df = spark.read.format("json").load("/data/flight-data/json/2015-summary.json")
合并Schema和Rows为DataFrames
Schema1 = StructType([StructField("id", StringType(), True),StructField("name", StringType(), True),StructField("country", StringType(), True)]
)row1 = Row('1', 'Oscar', 'United States')
row2 = Row('2', 'China', 'England')
myDF = spark.createDataFrame([row1, row2], schema=Schema1)
myDF.show()"""
+---+-----+-------------+
| id| name| country|
+---+-----+-------------+
| 1|Oscar|United States|
| 2|China| England|
+---+-----+-------------+
"""
两种查询:select和selectExpr
select
from pyspark.sql.functions import expr, col, columndf.select('dest_country_name').show(2)
df.select('dest_country_name', 'origin_country_name').show(2)
df.select(expr('dest_country_name'), col('dest_country_name'), column('dest_country_name')).show(2)"""
+-----------------+
|dest_country_name|
+-----------------+
| United States|
| United States|
+-----------------+
only showing top 2 rows+-----------------+-------------------+
|dest_country_name|origin_country_name|
+-----------------+-------------------+
| United States| Romania|
| United States| Croatia|
+-----------------+-------------------+
only showing top 2 rows+-----------------+-----------------+-----------------+
|dest_country_name|dest_country_name|dest_country_name|
+-----------------+-----------------+-----------------+
| United States| United States| United States|
| United States| United States| United States|
+-----------------+-----------------+-----------------+
only showing top 2 rows
"""
列重命名
df.select(expr('dest_country_name as destination')).show(2)
df.select(col('dest_country_name').alias('destination')).show(2)"""
+-------------+
| destination|
+-------------+
|United States|
|United States|
+-------------+
only showing top 2 rows+-------------+
| destination|
+-------------+
|United States|
|United States|
+-------------+
only showing top 2 rows
"""
selectExpr
列重命名
df.selectExpr('dest_country_name as destination', 'dest_country_name').show(2)"""
+-------------+-----------------+
| destination|dest_country_name|
+-------------+-----------------+
|United States| United States|
|United States| United States|
+-------------+-----------------+
only showing top 2 rows
"""
新增列
df.selectExpr('*', '(dest_country_name = origin_country_name) as withinCountry').show(2)"""
+-----------------+-------------------+-----+-------------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|withinCountry|
+-----------------+-------------------+-----+-------------+
| United States| Romania| 15| false|
| United States| Croatia| 1| false|
+-----------------+-------------------+-----+-------------+
only showing top 2 rows
"""
相当于SQL
SELECT *, (dest_country_name = origin_country_name) as withinCountry
FROM dfTable limit 2
使用聚合函数
df.selectExpr('avg(count)', 'count(distinct(dest_country_name))').show(2)"""
+-----------+---------------------------------+
| avg(count)|count(DISTINCT dest_country_name)|
+-----------+---------------------------------+
|1770.765625| 132|
+-----------+---------------------------------+
"""
添加列 withColumn
from pyspark.sql.functions import litdf.withColumn('numberOne', lit(1)).show(2)
df.withColumn('withinCountry', expr('dest_country_name == origin_country_name')).show(2)"""
+-----------------+-------------------+-----+---------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|numberOne|
+-----------------+-------------------+-----+---------+
| United States| Romania| 15| 1|
| United States| Croatia| 1| 1|
+-----------------+-------------------+-----+---------+
only showing top 2 rows+-----------------+-------------------+-----+-------------+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|withinCountry|
+-----------------+-------------------+-----+-------------+
| United States| Romania| 15| false|
| United States| Croatia| 1| false|
+-----------------+-------------------+-----+-------------+
only showing top 2 rows
"""
列重命名 withColumnRenamed
df.withColumnRenamed('dest_country_name', 'dest').show(2)"""
+-------------+-------------------+-----+
| dest|ORIGIN_COUNTRY_NAME|count|
+-------------+-------------------+-----+
|United States| Romania| 15|
|United States| Croatia| 1|
+-------------+-------------------+-----+
only showing top 2 rows
"""
去掉列
df.drop('origin_country_name').show(2)
"""
+-----------------+-----+
|DEST_COUNTRY_NAME|count|
+-----------------+-----+
| United States| 15|
| United States| 1|
+-----------------+-----+
only showing top 2 rows
"""
修改列类型
df.withColumn('count2', col('count').cast('long'))
行过滤 filter/where
这两者是等价的
df.filter('count < 2').show(2)
df.where('count < 2').show(2)
df.where(col('count') < 2).show(2)"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
+-----------------+-------------------+-----+
only showing top 2 rows
"""
多个条件过滤
df.where('count < 2').where('dest_country_name != "United States"').show(2)"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| Moldova| United States| 1|
| Malta| United States| 1|
+-----------------+-------------------+-----+
only showing top 2 rows
"""
去重
df.select('dest_country_name', 'origin_country_name').distinct().count()"""
equal to SQL:
SELECT COUNT(DISTINCT(dest_country_name, origin_country_name)) FROM dfTable;
"""
合并DataFrames
拥有同样的Schema以及columns才能合并
from pyspark.sql import Row
schema = df.schema
newRows = [Row("New Country", "Other Country", 5),Row("New Country 2", "Other Country 3", 1)
]
newDF = spark.createDataFrame(newRows, schema)# in Python
df.union(newDF)\.where("count = 1")\.where(col("ORIGIN_COUNTRY_NAME") != "United States")\.show()
"""
+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| United States| Croatia| 1|
| United States| Singapore| 1|
| United States| Gibraltar| 1|
| United States| Cyprus| 1|
| United States| Estonia| 1|
| United States| Lithuania| 1|
| United States| Bulgaria| 1|
| United States| Georgia| 1|
| United States| Bahrain| 1|
| United States| Papua New Guinea| 1|
| United States| Montenegro| 1|
| United States| Namibia| 1|
| New Country 2| Other Country 3| 1|
+-----------------+-------------------+-----+
"""
行排序 sort/orderBy
两种方式等价
df.sort("count").show(5)
df.orderBy("count", "DEST_COUNTRY_NAME").show(5)
df.orderBy(col("count"), col("DEST_COUNTRY_NAME")).show(5)from pyspark.sql.functions import desc, ascdf.orderBy(expr("count desc")).show(2)
df.orderBy(col("count").desc(), col("DEST_COUNTRY_NAME").asc()).show(2)
Limit
df.limit(5).show()
df.orderBy(expr("count desc")).limit(6).show()
相关文章:
Spark教程5-基本结构化操作
加载csv文件 df spark.read.format("json").load("/data/flight-data/json/2015-summary.json")Schema 输出Schema df.printSchema()使用Schema读取csv文件,以指定数据类型 from pyspark.sql.types import StructField, StructType, Strin…...
内置数据类型、变量名、字符串、数字及其运算、数字的处理、类型转换
内置数据类型 python中的内置数据类型包括:整数、浮点数、布尔类型(以大写字母开头)、字符串 变量名 命名变量要见名知意,确保变量名称具有描述性和意义,这样可以使得代码更容易维护,使用_可以使得变量名…...
Win/Mac/Android/iOS怎麼刪除代理設置?
設置代理設置的主要構成 IP 地址和端口 這些是代理伺服器配置的最基本組件。代理伺服器的IP地址引導互聯網流量,而端口號指定伺服器上的通信通道。 為什麼要刪除代理設置? 刪除代理設置通常是為了解決網路問題、提高速度、恢復安全性或過渡到新的網路…...
数据结构------手撕顺序表
文章目录 线性表顺序表的使用及其内部方法ArrayList 的扩容机制顺序表的几种遍历方式顺序表的优缺点顺序表的模拟实现洗牌算法 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,…...
UDP(用户数据报协议)端口监控
随着网络的扩展,确保高效的设备通信对于优化网络功能变得越来越重要。在这个过程中,端口发挥着重要作用,它是实现外部设备集成的物理连接器。通过实现数据的无缝传输和交互,端口为网络基础设施的顺畅运行提供了保障。端口使数据通…...
【Java小白图文教程】-05-数组和排序算法详解
精品专题: 01.《C语言从不挂科到高绩点》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. 《SpringBoot详细教程》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12789841.html?spm1001.20…...
OpenCV视觉分析之目标跟踪(1)计算密集光流的类DISOpticalFlow的介绍
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 这个类实现了 Dense Inverse Search (DIS) 光流算法。更多关于该算法的细节可以在文献 146中找到。该实现包含了三个预设参数集,以提…...
Lucas带你手撕机器学习——套索回归
好的,下面我将详细介绍套索回归的背景、理论基础、实现细节以及在实践中的应用,同时还会讨论其优缺点和一些常见问题。 套索回归(Lasso Regression) 1. 背景与动机 在机器学习和统计学中,模型的复杂性通常会影响其在…...
面试中的一个基本问题:如何在数据库中存储密码?
面试中的一个基本问题:如何在数据库中存储密码? 在安全面试中,“如何在数据库中存储密码?”是一个基础问题,但反映了应聘者对安全最佳实践的理解。以下是安全存储密码的最佳实践概述。 了解风险 存储密码必须安全&am…...
XML HTTP Request
XML HTTP Request 简介 XMLHttpRequest(XHR)是一个JavaScript对象,它最初由微软设计,并在IE5中引入,用于在后台与服务器交换数据。它允许网页在不重新加载整个页面的情况下更新部分内容,这使得网页能够实现动态更新,大大提高了用户体验。虽然名字中包含“XML”,但XML…...
TLS协议基本原理与Wireshark分析
01背 景 随着车联网的迅猛发展,汽车已经不再是传统的机械交通工具,而是智能化、互联化的移动终端。然而,随之而来的是对车辆通信安全的日益严峻的威胁。在车联网生态系统中,车辆通过无线网络与其他车辆、基础设施以及云端服务进行…...
当遇到 502 错误(Bad Gateway)怎么办
很多安装雷池社区版的时候,配置完成,访问的时候可能会遇到当前问题,如何解决呢? 客户端,浏览器排查 1.刷新页面和清除缓存 首先尝试刷新页面,因为有时候 502 错误可能是由于网络临时波动导致服务器无法连…...
学习记录:js算法(七十五): 加油站
文章目录 加油站思路一思路二思路三思路四思路五 加油站 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发…...
强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断
强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断 目录 强心剂!EEMD-MPE-KPCA-LSTM、EEMD-MPE-LSTM、EEMD-PE-LSTM故障识别、诊断效果一览基本介绍程序设计参考资料 效果一览 基本介绍 EEMD-MPE-KPCA-LSTM(集合经验模态分解-多尺…...
yarn的安装与使用以及与npm的区别(安装过程中可能会遇到的问题)
一、yarn的安装 使用npm就可以进行安装 但是需要注意的一点是yarn的使用和node版本是有关系的必须是16.0以上的版本。 输入以下代码就可以实现yarn的安装 npm install -g yarn 再通过版本号的检查来确定,yarn是否安装成功 yarn -v二、遇到的问题 1、问题描述…...
大数据行业预测
大数据行业预测 编译 李升伟 和所有预测一样,我们必须谨慎对待这些预测,因为其中一些预测可能成不了事实。当然,真正改变游戏规则的创新往往出乎意料,甚至让最警惕的预言家也措手不及。所以,如果在来年发生了一些惊天…...
可能是NextJs(使用ssr、api route)打包成桌面端(nextron、electron、tauri)的最佳解决方式
可能是NextJs(使用ssr、api route)打包成桌面端(nextron、electron、tauri)的最佳解决方式 前言 在我使用nextron(nextelectron)写了一个项目后打包发现nextron等一系列桌面端框架在生产环境是不支持next的ssr也就是api route功能的这就导致我非常难受&…...
二百七十、Kettle——ClickHouse中增量导入清洗数据错误表
一、目的 比如原始数据100条,清洗后,90条正确数据在DWD层清洗表,10条错误数据在DWD层清洗数据错误表,所以清洗数据错误表任务一定要放在清洗表任务之后。 更关键的是,Hive中原本的SQL语句,放在ClickHouse…...
CentOS6升级OpenSSH9.2和OpenSSL3
文章目录 1.说明2.下载地址3.升级OpenSSL4.安装telnet 服务4.1.安装 telnet 服务4.2 关闭防火墙4.2.使用 telnet 连接 5.升级OpenSSH5.1.安装相关命令依赖5.2.备份原 ssh 配置5.3.卸载原有的 OpenSSH5.4.安装 OpenSSH5.5.修改 ssh 配置文件5.6关闭 selinux5.7.重启 OpenSSH 1.说…...
2024 年 MathorCup 数学应用挑战赛——大数据竞赛-赛道 A:台风的分类与预测
2024年MathorCup大数据挑战赛-赛道A初赛--思路https://download.csdn.net/download/qq_52590045/89922904↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...
CMS内容管理系统的设计与实现:多站点模式的实现
在一套内容管理系统中,其实有很多站点,比如企业门户网站,产品手册,知识帮助手册等,因此会需要多个站点,甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...
vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能
vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能 查看官网:https://vxetable.cn 效果 代码 通过 checkbox-config.isShift 启用批量选中,启用后按住快捷键和鼠标批量选取 <template><div><vxe-grid v-bind"gri…...
Linux系统:进程间通信-匿名与命名管道
本节重点 匿名管道的概念与原理匿名管道的创建命名管道的概念与原理命名管道的创建两者的差异与联系命名管道实现EchoServer 一、管道 管道(Pipe)是一种进程间通信(IPC, Inter-Process Communication)机制,用于在不…...
