矩阵的可解性:关于Ax=b的研究
上一篇文章讲解了如何求解 A x = 0 Ax=0 Ax=0,得到 A A A的零空间。
类似的,我们今天学习的是如何求解 A x = b Ax=b Ax=b,并以此加强你对线性代数中,代数与空间的理解。
同样的,我们举与上一次一样的例子,矩阵 A A A为:
[ 1 2 2 2 2 4 6 8 3 6 8 10 ] \left[ \begin{matrix} 1 & 2 & 2 &2\\ 2 & 4 & 6&8\\ 3 & 6& 8 &10 \end{matrix} \right] 1232462682810
关于这个矩阵的详细分析与消元过程在上一篇文章讨论过,这里就不再赘述。
首先,我们将 b b b增广到矩阵 A A A中,得到如下矩阵:
∣ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {2}&{4}&{6}&{8} &{b_2}\\ {3}&{6}&{8}&{10}&{b_3} \end{array} \right| 1232462682810b1b2b3
经消元处理,能得到如下矩阵:
∣ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 × b 1 0 0 0 0 b 3 − b 2 − b 1 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {0}&{0}&{2}&{4} &{b_2-2\times b_1}\\ {0}&{0}&{0}&{0}&{b_3-b_2-b_1} \end{array} \right| 100200220240b1b2−2×b1b3−b2−b1
在继续进行下一步操作前,让我们想一想这个问题: A x = b Ax=b Ax=b在何时有解?
观察消元过后的第三行,不难发现, b b b的元素应该满足 b 3 − b 2 − b 1 = 0 b_3-b_2-b_1=0 b3−b2−b1=0,这样才能使矩阵第三行成立。对这个结论进行拓展,不难想到,当 b b b在矩阵 A A A的列空间内时,方程有解。明白这一点也会对我们接下来的操作有指导意义。
如同我们求零空间的方法,我们利用消元过后的自由列能快速得到一个关于 A x = b Ax=b Ax=b的特殊解。
具体到这道题上,我们可以看到 A 1 , 1 与 A 2 , 3 A_{1,1}与A_{2,3} A1,1与A2,3为主元。因为自由列的变量可以取任意值,为求计算方便,我们一般取其为0,即 x 2 = 0 , x 4 = 0 x_2=0,x_4=0 x2=0,x4=0。
那么此时的方程就变为了这样:
x 1 + 2 x 3 = b 1 2 × x 2 = b 2 − 2 b 1 x_1+2x_3=b_1 \\ 2 \times x_2 = b_2-2b_1 x1+2x3=b12×x2=b2−2b1
因为 b 1 , b 2 b_1,b_2 b1,b2为参数,所以现在我们就求得了特解 x p a r t i c u l a r , 即 x p x_{particular},即x_p xparticular,即xp
又一次同样的,我们采用求零空间时的方法,利用特解来求得所有的解,而这里也会用上零空间 N N N,设其中任意的元素为 n n n吧。
那么,我们有:
A x p = b A n = 0 Ax_p=b \\ An = 0 Axp=bAn=0
不难发现, A ( x p + n ) = b A(x_p+n)=b A(xp+n)=b,即特解加上零空间的和后得到的向量同样是方程的解。不妨猜想,特解加上零空间即使所有的解。前面证明了充分性,下面证明必要性:
设 x x x为一个任意的方程的解,有
A x = b A x p = b → A ( x − x P ) = 0 Ax=b \\ Ax_p=b \\ \rightarrow A(x-x_P)=0 Ax=bAxp=b→A(x−xP)=0
换言之 n + x p = x n+x_p=x n+xp=x
证得必要性成立。
所以,我们得到了 A x = b Ax=b Ax=b的解,即为其特解加上 A A A的零空间。
此时,再来想象一下,零空间是经过原点的向量空间,那么 A x = b Ax=b Ax=b的解就应是将零空间向特解的方向平移过去所得。要注意的是,其解并不包含原点,所以不是向量空间。
相关文章:
矩阵的可解性:关于Ax=b的研究
上一篇文章讲解了如何求解 A x 0 Ax0 Ax0,得到 A A A的零空间。 类似的,我们今天学习的是如何求解 A x b Axb Axb,并以此加强你对线性代数中,代数与空间的理解。 同样的,我们举与上一次一样的例子,矩阵 …...

10.22.2024刷华为OD C题型(三)--for循环例子
脚踝动了手术,现在宾馆恢复,伤筋动骨一百天还真不是说笑的,继续努力吧。 文章目录 靠谱的车灰度图恢复灰度图恢复 -- for循环使用例子 靠谱的车 https://www.nowcoder.com/discuss/564514429228834816 这个题目思路不难,就是要自…...

QT:MaintenanceTool 模块安装工具
QT的MaintenanceTool 工具对已安装的 Qt 进行卸载、修复等其他操作时提示At least one valid and enabled repository required for this action to succeed 解决方式:在设置中添加一个临时的仓库 https://mirrors.tuna.tsinghua.edu.cn/qt/online/qtsdkrepositor…...
同标签实现监听LocalStorage
使用 React 生命周期函数 useEffect来监听和处理 LocalStorage 的变化 import React, { useEffect } from react;const LocalStorageListener () > {useEffect(() > {// 注册监听器const handleStorageChange (event) > {if (event.key myKey) {console.log(注册…...

JAVA高性能缓存项目
版本一 代码实现 import java.util.HashMap; import java.util.concurrent.TimeUnit;public class CacheExample01 {private final static HashMap<String, Integer> cache new HashMap<>();public static Integer check(String userId) throws InterruptedExce…...

智慧农业大数据平台:智汇田园,数驭未来
智慧农业大数据平台 计讯物联智慧农业大数据平台是一个集管理数字化、作业自动化、生产智能化、产品绿色化、环境信息化、服务现代化于一体的多功能监管系统。它通过与硬件产品的搭配使用,实现对农业生产全过程的实时监测、精准控制和科学管理。该平台集成了多个数…...

Go语言基础教程:可变参数函数
Go 语言允许函数接收可变数量的参数,这种特性对于处理数量不确定的参数特别有用。在本教程中,我们将通过示例代码讲解如何定义和使用 Go 的可变参数函数。 package mainimport "fmt"// 定义一个可变参数函数 sum,接收任意数量的整…...
高并发场景下解决并发数据不一致
简单的场景: 全量数据更新的情况下, 不在乎同一秒的请求都必须要成功, 只留下最新的更新请求数据 方案常用的是 1、数据库增加时间戳标识实现的乐观锁, 请求参数从源头带上微秒或者毫秒时间戳数据库存储, 然后在更新SQL语句上比较 (数据库的时间 < 参数传递的时间) 例如: A…...

OpenAI GPT-o1实现方案记录与梳理
本篇文章用于记录从各处收集到的o1复现方案的推测以及介绍 目录 Journey Learning - 上海交通大学NYUMBZUAIGAIRCore IdeaKey QuestionsKey TechnologiesTrainingInference A Tutorial on LLM Reasoning: Relevant methods behind ChatGPT o1 - UCL汪军教授Core Idea先导自回归…...

Excel:vba实现生成随机数
Sub 生成随机数字()Dim randomNumber As IntegerDim minValue As IntegerDim maxValue As Integer 设置随机数的范围(假入班级里面有43个学生,学号是从1→43)minValue 1maxValue 43 生成随机数(在1到43之间生成随机数)randomNumber Application.WorksheetFunctio…...

Python | Leetcode Python题解之第506题相对名次
题目: 题解: class Solution:desc ("Gold Medal", "Silver Medal", "Bronze Medal")def findRelativeRanks(self, score: List[int]) -> List[str]:ans [""] * len(score)arr sorted(enumerate(score), …...
安全见闻(6)
声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址:安全见闻(6)_哔哩哔哩_bilibili 学无止境,开拓自己的眼界才能走的更远 本文主要讲解通讯协议涉及的安全问题。…...

Promise、async、await 、异步生成器的错误处理方案
1、Promise.all 的错误处理 Promise.all 方法接受一个 Promise 数组,并返回所有解析 Promise 的结果数组: const promise1 Promise.resolve("one"); const promise2 Promise.resolve("two");Promise.all([promise1, promise2]).…...
腾讯云:数智教育专场-学习笔记
15点13分2024年10月21日(短短5天的时间,自己的成长速度更加惊人)-开始进行“降本增效”学习模式,根据小米手环对于自己的行为模式分析(不断地寻找数据之间的关联性),每天高效记忆时间࿰…...

Ovis: 多模态大语言模型的结构化嵌入对齐
论文题目:Ovis: Structural Embedding Alignment for Multimodal Large Language Model 论文地址:https://arxiv.org/pdf/2405.20797 github地址:https://github.com/AIDC-AI/Ovis/?tabreadme-ov-file 今天,我将分享一项重要的研…...
python的Django的render_to_string函数和render函数模板的使用
一、render_to_string render_to_string 是 Django 框架中的一个便捷函数,用于将模板渲染为字符串。 render_to_string(template_name.html, context, requestNone, usingNone) template_name.html:要渲染的模板文件的名称。context:传递给…...

基于Python大数据的王者荣耀战队数据分析及可视化系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...

【Linux学习】(3)Linux的基本指令操作
前言 配置Xshell登录远程服务器Linux的基本指令——man、cp、mv、alias&which、cat&more&less、head&tail、date、cal、find、grep、zip&tar、bc、unameLinux常用热键 一、配置Xshell登录远程服务器 以前我们登录使用指令: ssh 用户名你的公网…...

Mac 使用脚本批量导入 Apple 歌曲
最近呢,买了一个 iPad,虽然家里笔记本台式都有,显示器都是 2个,比较方便看代码(边打游戏边追剧)。 但是在床上拿笔记本始终还是不方便,手机在家看还是小了点,自从有 iPad 之后&…...

全桥PFC电路及MATLAB仿真
一、PFC电路原理概述 PFC全称“Power Factor Correction”(功率因数校正),PFC电路即能对功率因数进行校正,或者说是能提高功率因数的电路。是开关电源中很常见的电路。功率因数是用来描述电力系统中有功功率(实际使用…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...