当前位置: 首页 > news >正文

语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)

文章目录

  • 前言
  • 一、环境搭建
  • 二、构建数据集
  • 三、修改配置文件
    • ①数据集文件配置
    • ②模型文件配置
  • 四、模型训练和测试
    • 模型训练
    • 模型验证
    • 模型推理
  • 总结


前言

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

提示:本文是YOLOv11的分割模型训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程

2024年9月30日,YOLOv11Ultralytics最新发布的计算机视觉模型。支持多种任务,包括目标检测、实例分割、图像分类、姿态估计、有向目标检测以及物体跟踪等,本文主要讲述其分割任务的模型搭建训练流程。

在这里插入图片描述

在这里插入图片描述

代码地址:https://github.com/ultralytics/ultralytics

在这里插入图片描述


一、环境搭建

在配置好CUDA环境,并且获取到YOLOv11源码后,建议新建一个虚拟环境专门用于YOLOv11模型的训练。将YOLOv11加载到环境后,安装剩余的包,连接镜像,安装更快一些。

pip install ...

二、构建数据集

YOLOv11模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:Labelme安装与使用教程。注意labelme的标签是json格式的,这在训练前需要将json转成yolo的txt格式,链接里提供了相关的转换代码。

将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下,注意改成自己的文件路径。我的原始数据存放在/root/ultralytics-main/data,images里面包含全部图像,newLabel中包含打好的标签。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

	0 0.5655737704918032 0.460093896713615 0.5655737704918032 0.49765258215962443 0.5737704918032787 0.5352112676056338 0.5819672131147541 0.5915492957746479 0.5922131147540983 0.5821596244131455 0.5840163934426229 0.5305164319248826 0.5778688524590164 0.48826291079812206
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "data/images/"
label_original_path = "data/newLabel/"cur_path = os.getcwd()
#cur_path = 'D:/image_denoising_test/denoise/'
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.1
test_percent = 0.1def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.jpg'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.jpg'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.jpg'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()

划分完成后将会在datasets文件夹下生成划分好的文件,其中images为划分后的图像文件,里面包含用于trainvaltest的图像,已经划分完成;

labels文件夹中包含划分后的标签文件,已经划分完成,里面包含用于trainvaltest的标签;train.txtval.txttest.txt中记录了各自的图像路径。

在这里插入图片描述

在这里插入图片描述

在训练过程中,也是主要使用这三个txt文件进行数据的索引。

三、修改配置文件

①数据集文件配置

数据集划分完成后,在根目录下新建data.yaml文件,即data.yaml,用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name内加上类别名即可。data.yaml中的内容为:

path: ../datasets/images  # 数据集所在路径
train: train  # 数据集路径下的train.txt
val: val  # 数据集路径下的val.txt
test: test  # 数据集路径下的test.txt# Classes
names:0: bubbeplume

在这里插入图片描述

②模型文件配置

ultralytics/cfg/models/11文件夹下存放的是YOLOv11分割模型的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。此处以yolo11-seg.yaml文件中的模型为例,将 nc: 1 # number of classes 修改类别数 修改成自己的类别数,如下:

在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPss: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPsm: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPsl: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPsx: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)

修改完成后,模型文件就配置好啦。

四、模型训练和测试

YOLOv11训练可使用命令或者代码进行运行,在训练过程中使用的具体的参数信息可在ultralytics/cfg/default.yaml路径下找到。

首先需要将default.yaml中的task设置成segment

模型训练

命令训练

打开终端,输入命令

yolo task=segment mode=train model=ultralytics/cfg/models/11/yolo11-seg.yaml data=data.yaml batch=32 epochs=300 imgsz=640 workers=10 device=0
  • task:表示任务为目标分割,可选detect, segment,classify
  • mode:表示模式,可选train,val,predict,export
  • model:表示使用的模型,这里我就是使用的刚刚新建的yolov8-mask.yaml
  • data:表示训练的图像文件,
  • device:表示是否使用GPU进行训练,可选0,1,2…或者cpu
  • epoch:表示训练的轮次
  • batch:表示每次送人训练的图像数量,当报错OOM时,需调小batch大小,但大小需要设置为2的幂次,最小为1
  • imgsz:表示图像大小,会统一缩放成指定大小
  • workers:指数据装载时cpu所使用的线程数,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将default调成0了。

代码训练

from ultralytics import YOLOif __name__ == '__main__':model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')  model.train(data=r'data.yaml',imgsz=640,epochs=100,single_cls=True,  batch=16,workers=10,device='0',)

训练情况:

在这里插入图片描述
在这里插入图片描述

模型验证

命令验证

yolo task=segment mode=val model=runs/segment/train/best.pt data=data.yaml device=0

在验证阶段,mode模式为验证,mode=val,模型使用训练完成的权重文件,第一次训练完存放在:runs/segment/train/best.ptbest.pt就是训练完成后的最佳权重。

当然也需要指定数据集data=data.yaml和所用的设备device=0,和训练时一致。也可以添加batch、imgsz,含义和训练时一致。

代码验证

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/segment/train/best.pt')model.val(data='data.yaml',imgsz=640,batch=16,split='test',workers=10,device='0',)

模型推理

命令推理

yolo task=segment mode=predict model=runs/segment/train/best.pt source=inference  device=0

在推理阶段,mode模式为预测,mode= predict,模型使用训练完成的权重文件:runs/segment/train/best.ptsource表示需要预测的图像文件路径,inference中存放了准备预测的图像

代码推理

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/segment/train/best.pt')model.predict(source='inference',imgsz=640,device='0',)

总结

以上就是YOLOv11训练自己数据集的全部过程啦,欢迎大家在评论区交流~

相关文章:

语义分割:YOLOv11的分割模型训练自己的数据集(从代码下载到实例测试)

文章目录 前言一、环境搭建二、构建数据集三、修改配置文件①数据集文件配置②模型文件配置 四、模型训练和测试模型训练模型验证模型推理 总结 前言 专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改…...

Python爬虫:从入门到精通

Python爬虫:从入门到精通 在数字时代,信息就如同水源,源源不绝。然而,当你想要从海量的信息中汲取有价值的“水”,你会发现这并不是一件容易的事。这就是为什么网络爬虫出现了。它们帮助我们在网络的海洋中航行&#…...

Web组态软件

Web组态软件是近年来前端开发领域的一股新兴力量,它以其独特的魅力吸引着越来越多的开发者们。那么,Web组态软件到底是什么?它有哪些特点?我们又该如何选择和使用它呢?下面,就让我们一起探讨这些问题。 一…...

Java中为什么要私有化构造方法

为什么要私有化构造方法 要私有化的方法不是来描述一类事物的,创建没有任何意义 解决方案: 提示:这里填写该问题的具体解决方案: 为什么要将构造方法私有化? 问:如果要限制一个类对象产生,即&…...

【大数据学习 | kafka】kafuka的基础架构

1. kafka是什么 Kafka是由LinkedIn开发的一个分布式的消息队列。它是一款开源的、轻量级的、分布式、可分区和具有复制备份的(Replicated)、基于ZooKeeper的协调管理的分布式流平台的功能强大的消息系统。与传统的消息系统相比,KafKa能够很好…...

2-petalinux2018.3摸索记录-petalinux rootfs

1Filesystem Packages文件系统软件包2Petalinux Package GroupsPetalinux软件包组3Image Features镜像特性4apps应用程序5user packages用户软件包6Petalinux RootFS SettingsPetalinux根文件系统设置 Filesystem Packages(文件系统软件包) 这个选项主要…...

RHCE作业二

1.要求: 配置nginx服务通过ip访问多网站 2. 1关闭防火墙 2创建ip 3配置 4创建文件 5测试...

GPS/北斗时空安全隔离装置(卫星时空防护装置)使用手册

GPS/北斗时空安全隔离装置(卫星时空防护装置)使用手册 GPS/北斗时空安全隔离装置(卫星时空防护装置)使用手册 时空安全隔离装置采用先进的防欺骗抗干扰技术,能够有效检测识别欺骗干扰信号,并快速对异常信号进行关断、切换,消除欺骗干扰影响。…...

【C++篇】深度解析类与对象(下)

引言 在上一篇博客中,我们学习了C的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,…...

【gRPC】什么是RPC——介绍一下RPC

说起RPC,博主使用CPP手搓了一个RPC项目,RPC简单来说,就是远程过程调用:我们一般在本地传入数据进行执行函数,然后返回一个结果;当我们使用RPC之后,我们可以将函数的执行过程放到另外一个服务器上…...

谈谈你对AQS的理解

AQS 是多线程同步器,它是 JUC 包中多个组件的底层实现,如 Lock、CountDownLatch、Semaphore等都用到了AQS。 从本质上来说,AQS 提供了两种锁机制,分别是排它锁,和共享锁。 排它锁,就是存在多线程竞争同一…...

Bitcoin全节点搭建

1. wget https://bitcoincore.org/bin/bitcoin-core-0.20.1/bitcoin-0.20.1-x86_64-linux-gnu.tar.gz 2.tar -xzvf bitcoin-0.20.1-x86_64-linux-gnu.tar.gz mv bitcoin-0.20.1 bitcoin 3.创建配置文件(bitcoin.conf) mkdir -p /btc_data mkdir ~/.b…...

【mysql进阶】4-6. InnoDB 磁盘文件

InnoDB 磁盘⽂件 1 InnoDB存储引擎包含哪些磁盘⽂件? 🔍 分析过程 ✅ 解答问题 InnoDB的磁盘⽂件主要是表空间⽂件和其他⽂件,表空间包括:系统表空间、独⽴表空间、通⽤表空间、临时表空间和撤销表空间;其他⽂件有重做…...

HexForge:一款用于扩展安全汇编和十六进制视图的IDA插件

关于HexForge HexForge是一款用于扩展安全汇编和十六进制视图的IDA插件,在该工具的帮助下,广大研究人员可以方便地直接从 IDA Pro 界面数据解码、解密或执行安全数据审计任务。 功能介绍 1、从 IDA 的反汇编或十六进制视图复制原始十六进制;…...

WORFBENCH:一个创新的评估基准,目的是全面测试大型语言模型在生成复杂工作流 方面的性能。

2024-10-10,由浙江大学和阿里巴巴集团联合创建的WORFBENCH,一个用于评估大型语言模型(LLMs)生成工作流能力的基准测试。它包含了一系列的测试和评估协议,用于量化和分析LLMs在处理复杂任务时分解问题和规划执行步骤的能力。WORFBE…...

SpringBoot 集成 Activiti 7 工作流引擎

一. 版本信息 IntelliJ IDEA 2023.3.6JDK 17Activiti 7 二. IDEA依赖插件安装 安装BPM流程图插件,如果IDEA的版本超过2020,则不支持actiBPM插件。我的IDEA是2023版本我装的是 Activiti BPMN visualizer 插件。 在Plugins 搜索 Activiti BPMN visualizer 安装创建…...

UVM初学篇 -(22)UVM field_automation 域的自动化机制

field_automation机制是域的自动化的机制,这个机制的最大的优点是可以对一些变量进行批量的处理,比如对象拷贝、克隆、打印之类的变量。 一、 成员变量的注册 使用field_automation机制首先要用uvm_field 系列宏完成变量的注册,类中的成员变…...

STL二分查找

本课主要介绍容器部分里面的二分查找函数。涉及的函数有 3 个,这 3 个函数的强两个输入参数都和迭代器有关,或者说参数是可以迭代的,而第三个参数则是你要查找的值。 1. binary_search binary_search 的返回结果是 bool 值,如果找…...

啤酒游戏—企业经营决策沙盘

感谢黄浦区文华学院的邀请,今年是为南房集团开展系统思考培训的第二年。我们现在为客户设计的一整年系统思考训练中,会将系统环路结构图与真实议题研讨作为前置内容,让大家在理解整体框架后,再体验麻省理工学院系统动力学著名的“…...

尚硅谷-react教程-求和案例-@redux-devtools/extension 开发者工具使用-笔记

## 7.求和案例_react-redux开发者工具的使用(1).npm install redux-devtools/extension(2).store中进行配置import { composeWithDevTools } from redux-devtools/extension;export default createStore(allReducer,composeWithDevTools(applyMiddleware(thunk))) src/redux/s…...

【动手学强化学习】part2-动态规划算法

阐述、总结【动手学强化学习】章节内容的学习情况,复现并理解代码。 文章目录 一、什么是动态规划?1.1概念1.2适用条件 二、算法示例2.1问题建模2.2策略迭代(policyiteration)算法2.2.1伪代码2.2.2完整代码2.2.3运行结果2.2.4代码…...

【python爬虫实战】爬取全年天气数据并做数据可视化分析!附源码

由于篇幅限制,无法展示完整代码,需要的朋友可在下方获取!100%免费。 一、主题式网络爬虫设计方案 1. 主题式网络爬虫名称:天气预报爬取数据与可视化数据 2. 主题式网络爬虫爬取的内容与数据特征分析: - 爬取内容&am…...

初识Linux · 动静态库(incomplete)

目录 前言: 静态库 动态库 前言: 继上文,我们从磁盘的理解,到了文件系统框架的基本搭建,再到软硬链接部分,我们开始逐渐理解了为什么运行程序需要./a.out了,这个前面的.是什么我们也知道了。…...

华为OD机试 - 匿名信(Java 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(E卷D卷A卷B卷C卷)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加…...

通过rancher2.7管理k8s1.24及1.24以上版本的k8s集群

目录 初始化实验环境 安装Rancher 登录Rancher平台 通过Rancher2.7管理已存在的k8s最新版集群 文档中的YAML文件配置直接复制粘贴可能存在格式错误,故实验中所需要的YAML文件以及本地包均打包至网盘. 链接:https://pan.baidu.com/s/1oYX4eGoBtW_R-7i…...

text-align的属性justify

text-align常用的属性是left、center、right,具体的可参考css解释,今天重点记录的对象是justify justify 可以使文本的两端都对齐在两端对齐文本中,文本行的左右两端都放在父元素的内边界上。然后,调整单词和字母间的间隔&#x…...

使用python自制桌面宠物,好玩!——枫原万叶桌宠,可以直接打包成exe去跟朋友炫耀。。。

大家好,我是小黄。 今天我们使用python实现一个桌面宠物。只需要gif动态图片就行。超级简单容易上手。 #完整源代码可在下方图片免费获取 一:下载相关的库文件。 我们本次使用到的库文件为:tkinter和pyautogui 下载命令: pip…...

使用 ASP.NET Core 8.0 创建最小 API

构建最小 API,以创建具有最小依赖项的 HTTP API。 它们非常适合需要在 ASP.NET Core 中仅包括最少文件、功能和依赖项的微服务和应用。 本教程介绍使用 ASP.NET Core 生成最小 API 的基础知识。 在 ASP.NET Core 中创建 API 的另一种方法是使用控制器。 有关在最小 …...

气候服务平台ClimateSERV2.0简介(python)

1 简介 ClimateSERV 2.0允许开发从业者、科学家/研究人员和政府决策者可视化和下载历史降雨数据、植被状况数据以及 180 天的降雨和温度预报,以增进对农业和水资源供应相关问题的理解并做出改进的决策。 这些数据可以通过 Web 应用程序直接访问,也可以…...

Docker | centos7上对docker进行安装和配置

安装docker docker配置条件安装地址安装步骤2. 卸载旧版本3. yum 安装gcc相关4. 安装需要的软件包5. 设置stable镜像仓库6. 更新yum软件包索引7. 安装docker引擎8. 启动测试9. 测试补充:设置国内docker仓库镜像 10. 卸载 centos7安装docker https://docs.docker.com…...

wordpress获取登录密码/网络营销策划方案框架

pig是hadoop的一个子项目,用于简化MapReduce的开发工作,可以用更人性化的脚本方式分析数据。 一、安装 a) 下载 从官网http://pig.apache.org下载最新版本(目前是0.14.0版本),最新版本可以兼容hadop 0.x /1.x / 2.x版本,直接解压到…...

选择合肥网站建设/网站注册信息查询

文章目录简介nvue 和 vue 相互通讯方式:nvue注意事项:简介 uni-app是逻辑渲染分离的,渲染层在app端提供了两套排版引擎, 小程序方式的webview渲染和weex方式的原生渲染,两种渲染引入可以自己根据需要选。 vue文件走的…...

做网站需要的图片去哪找/网络营销怎么做

默认安装完毕wordpress后,需要完善的地方很有很多,首选就是选择一个符合网站风格的模版,面对众多免费worpress模版,肯定会挑花了你眼。这真是worpress强大之初,所有你想到或没想到的,wp团队都为你想到和做到…...

商城网站开发报/seo营销网站

《计算机逻辑设计》是2015年人民邮电出版社出版的图书,作者是余立功。书 名计算机逻辑设计别 名foundation of computer logic design作 者余立功类 别高等教育规划教材出版社人民邮电出版社出版时间2015年8月1日页 数296 页定 价45.00开 本16…...

开发app制作公司/seo快速排名代理

Smartdraw 更多图片(5张) SmartDraw是世界上最流行的商业绘图软件。2006 年获美国政府司法部 (U.S. Department of Justice) 专用软件,2007获美国政府商务部 (US Department of Commence)选用。 分享百科名片: 简介 SmartDraw 是专业的图表制作软件。可以…...

好网站建设公司服务/百度代运营公司

内外网同时上网 不少公司的网管试图解决双网卡问题,下面我就给大家详细的讲解一下双网卡同时使用的方法,这样即可保障内网的安全,又能解决电脑访问外网的问题,一举两得。希望大家喜欢。 首先你的机器需要有两块网卡,…...