当前位置: 首页 > news >正文

力扣102 二叉树的层序遍历 广度优先搜索

二叉树的层序遍历

题目描述

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
在这里插入图片描述

示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]

示例 2:
输入:root = [1]
输出:[[1]]

示例 3:
输入:root = []
输出:[]

解题思路

实现目标

  • 将二叉树按照层数进行分类,并且将每一层的结点数据放到同一个数组,最后再用一个大数组将这些代表不同层数的数组包起来,也就是说最后需要返回一个二维数组。

用到的数据结构

  • 队列:使用队列存放二叉树的结点,并且通过队列的大小来标记结点所在的层数。

核心思路—广度优先遍历

  1. 先把根结点放到队列中,此时队列的大小为1,使用一个变量size来记录此时队列的大小。size的值即就是现在队列中存放结点在二叉树中的层数。
  2. 创建一个一维数组来存放该层级的二叉树结点(本题中我用到了vector容器),怎么存放呢?什么时候存?------遍历size次,每一次都将队列的队首元素存入到一维数组中,同时如果队首元素有左右孩子,将队首元素的孩子们加入到队列的队尾,然后将队首元素弹出。
  3. size次遍历完之后,此时意味着二叉树的一层遍历结束,此时需要将2中的一维数组加入到需要返回的二维数组中。
  4. 循环2过程,直到队列为空。
  5. 返回二维数组。

特殊情况

  • 如果根结点本身就为空,直接返回一个空的二维数组即可。

代码

 vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> answer;//特殊情况if(!root){return answer;}queue<TreeNode*> q;//创建一个队列q.push(root);//将根结点放入队列中while(!q.empty()){int size = q.size(); vector<int> LevelNodes;//创建一个一维数组来存放该层级的所有结点//遍历size次for(int i =1;i<=size;i++){//将队首元素的值存放到一维数组中LevelNodes.push_back(q.front()->val);//如果左孩子存在,加入到队列尾部if(q.front()->left){q.push(q.front()->left);}//如果右孩子存在,加入到队列尾部if(q.front()->right){q.push(q.front()->right);}//弹出队首元素q.pop();}//将一位数组加入到要返回的二维数组中answer.push_back(LevelNodes);}return answer;}

通过

在这里插入图片描述

相关文章:

力扣102 二叉树的层序遍历 广度优先搜索

二叉树的层序遍历 题目描述 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15…...

堆(堆排序,TOP K, 优先级队列)

1 概念解释 堆的定义&#xff1a;堆是一颗完全二叉树&#xff0c;分为大堆和小堆 大堆&#xff1a;一棵树中&#xff0c;任何父亲节点都大于等于孩子的节点&#xff0c;大堆的根结点最大 小堆&#xff1a;一棵树中&#xff0c;任何父亲节点都小于等于孩子节点&#xff0c;小堆…...

(三)行为模式:11、模板模式(Template Pattern)(C++示例)

目录 1、模板模式含义 2、模板模式的UML图学习 3、模板模式的应用场景 4、模板模式的优缺点 5、C实现的实例 1、模板模式含义 模板模式&#xff08;Template Method Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一个操作中的算法骨架&#xff0c;将某些步骤…...

贝叶斯中的充分统计量

内容来源 贝叶斯统计&#xff08;第二版&#xff09;中国统计出版社 前两篇笔记简述经典统计中的充分统计量和判断充分统计量的 N e y m a n Neyman Neyman 因子分解定理 而在贝叶斯统计中&#xff0c;充分统计量也有一个充要条件 定理兼定义 设 x ( x 1 , x 2 , ⋯ , x …...

012:ArcGIS Server 10.2安装与站点创建教程

摘要&#xff1a;本文详细介绍地理信息系统服务器软件ArcGIS Server 10.2的安装与站点创建流程。 一、软件介绍 ArcGIS Server 10.2是Esri公司开发的一款强大的地理信息系统&#xff08;GIS&#xff09;服务器软件。它支持发布和共享地图、地理数据处理服务及空间分析功能&…...

xlive.dll错误的详细解决办法步骤教程,xlive.dll基本状况介绍

在计算机的众多文件中&#xff0c;“xlive.dll”扮演着独特而重要的角色。所以当你的电脑丢失了xlive.dll文件时&#xff0c;会倒是电脑不能正常运行&#xff0c;那么出现这样的问题有什么办法可以将丢失的xlive.dll进行修复呢&#xff1f;今天这篇文章将和大家聊聊xlive.dll错…...

通俗易懂的餐厅例子来讲解JVM

餐厅版本 JVM&#xff08;Java虚拟机&#xff09;可以想象成一个虚拟的计算机&#xff0c;它能够运行Java程序。为了让你更容易理解&#xff0c;我们可以用一个餐厅的比喻来解释JVM&#xff1a; 菜单&#xff08;Java源代码&#xff09;&#xff1a; 想象一下&#xff0c;Java…...

Python从入门到高手7.3节-列表的常用操作方法

目录 7.3.1 列表常用操作方法 7.3.2 列表的添加 7.3.3 列表的查找 7.3.4 列表的修改 7.3.5 列表的删除 7.3.6 与列表有关的其它操作方法 7.3.7 与10月说再见 7.3.1 列表常用操作方法 列表类型是一种抽象数据类型&#xff0c;抽象数据类型定义了数据类型的操作方法。在本…...

Prompt提示词设计:如何让你的AI对话更智能?

Prompt设计&#xff1a;如何让你的AI对话更智能&#xff1f; 在人工智能的世界里&#xff0c;Prompt&#xff08;提示词&#xff09;就像是一把钥匙&#xff0c;能够解锁AI的潜力&#xff0c;让它更好地理解和响应你的需求。今天&#xff0c;我们就来聊聊如何通过精心设计的Pr…...

2024-10月的“冷饭热炒“--解读GUI Agent 之computer use?phone use?——多模态大语言模型的进阶之路

GUI Agent 之computer use&#xff1f;phone use?——多模态大语言模型的进阶之路 1.最新技术事件浅析三、思考和方案设计工具代码部分1.提示词2.工具类API定义&#xff0c;这里主要看computer tool就够了 总结 本文会总结概括这一应用的利弊&#xff0c;然后给出分析和工具代…...

Me 攒的GPT修改论文提示词

没有会员的GPT They demonstrated that QGAN exhibits an exponential advantage over classical methods when using data consisting of samples of measurements made on high-dimensional spaces. 作为related work 时态对吗&#xff1f; 有需要修改的吗&#xff1f;你可…...

关于在vue2中接受后端返回的二进制流并进行本地下载

后端接口返回&#xff1a; 前端需要在两个地方写代码&#xff1a; 1.封装接口处&#xff0c;responseType: blob 2.接收相应处 download() {if (this.selectionList.length 0) {this.$message.error("请选择要导出的数据&#xff01;");} else {examineruleExport…...

[BUG]warn(f“Failed to load image Python extension: {e}“)的解决办法

在使用LlaMa-Factory工具包时&#xff0c;安装好环境后&#xff0c;输入llamafactory-cli env查看llama-factory的版本等信息时&#xff0c;bash提醒&#xff1a; /home/ubuntu/anaconda3/envs/Llama-Factory/lib/python3.10/site-packages/torchvision/io/image.py:13: UserW…...

配置MUX VLAN 的实验配置

概念和工作原理: MUX VLAN&#xff08;Multiplex VLAN&#xff09;是一种高级的VLAN技术&#xff0c;它通过在交换机上实现二层流量隔离和灵活的网络资源控制&#xff0c;提供了一种更为细致的网络管理方式。 概念与工作原理 基本概念&#xff1a; MUX VLAN通过定义主VLAN&am…...

高考相关 APP 案例分享

文章首发于https://qdgithub.com/article/2032 一、核心内容 &#xff08;一&#xff09;高考相关 APP 案例 圈友朱康分享高考相关的 APP。提到猿题库&#xff0c;其主要功能有练习册和猿辅导&#xff0c;都是收费的。猿题库出题给学生练习&#xff0c;将易错的总结起来出练习…...

AI的出现对计算机相关类型的博客或论坛的影响

最近越来越感觉到&#xff0c;AI的出现对计算机相关类型的博客是一种从寄生再到蚕食的过程。 在AI没出现之前&#xff0c;大家遇到问题&#xff0c;那一般都是去百度搜索&#xff0c;然后就能找到大神前辈的解答思路&#xff0c;这些解答思路基本都是写在博客或者论坛里的&…...

[LeetCode] 784. 字母大小写全排序

题目描述&#xff1a; 给定一个字符串 s &#xff0c;通过将字符串 s 中的每个字母转变大小写&#xff0c;我们可以获得一个新的字符串。 返回 所有可能得到的字符串集合 。以 任意顺序 返回输出。 示例 1&#xff1a; 输入&#xff1a;s "a1b2" 输出&#xff1…...

大数据Azkaban(二):Azkaban简单介绍

文章目录 Azkaban简单介绍 一、Azkaban特点 二、Azkaban组成结构 三、Azkaban部署模式 1、solo-server ode&#xff08;独立服务器模式&#xff09; 2、two server mode&#xff08;双服务器模式&#xff09; 3、distributed multiple-executor mode&#xff08;分布式多…...

Vue3_开启全局websocket

1、封装websocket 新建文件夹"socket.ts"&#xff0c;路径&#xff1a;"/utils/socket" export default (onMessage: Function) > {let socketUrl ws://171.29.8.218:8080/ems/ws/screen //socket请求地址let socket: WebSocketlet lockReconnect f…...

PTA 社交集群

当你在社交网络平台注册时&#xff0c;一般总是被要求填写你的个人兴趣爱好&#xff0c;以便找到具有相同兴趣爱好的潜在的朋友。一个“社交集群”是指部分兴趣爱好相同的人的集合。你需要找出所有的社交集群。 输入格式 输入在第一行给出一个正整数 N&#xff08;≤1000&…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

机器学习的数学基础:线性模型

线性模型 线性模型的基本形式为&#xff1a; f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法&#xff0c;得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...