当前位置: 首页 > news >正文

Ollama: 使用Langchain的OllamaFunctions

1. 引言

Function call Langchain的Ollama 的实验性包装器OllamaFunctions,提供与 OpenAI Functions 相同的 API。因为网络的原因,OpenAI Functions不一定能访问,但如果能通过Ollama部署的本地模型实现相关的函数调用,还是有很好的实践意义。使用不同的模型可能能够得到不同的结果

2.Function Call

Function Call,或者叫函数调用、工具调用,是大语言模型中比较重要的一项能力,对于扩展大语言模型的能力,或者构建AI Agent,至关重要。
Function Call的简单原理如下:

  • 按照特定规范(这个一般是LLM在训练阶段构造数据的格式),定义函数,一般会包含函数名、函数描述,参数、参数描述、参数类型,必填参数,一般是json格式
  • 将函数定义绑定的大模型上,这一步主要是让LLM感知到工具的存在,好在query来到时选取合适的工具
  • 跟常规使用一样进行chat调用
  • 检查响应中是否用tool、function之类的部分,如果有,则说明触发了函数调用,并且进行了参数解析
  • 根据json中定义的函数名,找到Python中的函数代码,并使用大模型解析的参数进行调用,到这一步,一般已经拿到结果了
  • 通常还会再增加一步,就是拿Python中调用函数的结果,和之前的历史记录,继续调用一次大模型,这样能让最终返回结果更自然

下面这张图简单描述了大语言模型函数调用的流程:

User ChatApp GPTAPI "How's the weather in NYC?" Prompt: "How's the weather in NYC?" Call get_weather("NYC") Result: "Raining, 90% humidity, 57°F" Response: "It is raining in NYC, with a humidity of 90% and a temperature of 57°F" "It is raining in NYC, with a humidity of 90% and a temperature of 57°F" User ChatApp GPTAPI

3. Ollama模型及相关API_KEY的准备

3.1 安装Ollama

Ollama中下载大语言模型,在本试验中,将使用Ollama部署本地模型Qwen2:7b,通过ollama pull qwen2:7b即可下载,在本机运行这个模型推荐16G内存/显存,如果内存或显存不够,可以下载qwen2:7b版本,但Function Call效果可能会下降【测试表明,如果没有足够的显示,模型响应速度会很慢】。

3.2 申请相关的API_KEY

申请高德API,天气查询使用的是高德API。通过网站 https://console.amap.com/dev/key/app

申请Tavily API Key,这是一个为LLM优化的搜索API,免费用户每月有1000次调用额度,地址https://tavily.com/,点击右上角的Try it out. 通过网站:官网:Tavily

3.3 安装引用相关的包

安装langchain, langchain-core, langchain-experimental

from langchain_experimental.llms.ollama_functions import OllamaFunctionsmodel = OllamaFunctions(model='qwen:14b', base_url='http://192.2.22.55:11434', format='json')
# 定义相关API_Key
amap_api_key = '2b6437dfc4fa7f2af564eb2569a6116f'   # https://console.amap.com/dev/key/app
tavily_api_key = '此处填写Tavily API Key'             #官网:Tavily tavily.com

4. 绑定工具

4.1 定义工具

此处定义了2个工具,一个是网络搜索,一个是天气查询,其中天气查询要发送2次网络请求,首先根据城市名称拿到对应的行政区划码adcode,然后再使用adcode查询天气

# 自定义网络搜索工具
def search_web(query, k=5, max_retry=3):import osfrom langchain_community.retrievers import TavilySearchAPIRetrieveros.environ["TAVILY_API_KEY"] = tavily_api_keyretriever = TavilySearchAPIRetriever(k=5)documents = retriever.invoke(query)# return [{'title': doc.metadata['title'], 'abstract': doc.page_content, 'href': doc.metadata['source'], 'score': doc.metadata['score']} for doc in#         documents]content = '\n\n'.join([doc.page_content for doc in documents])prompt = f"""请将下面这段内容(<<<content>>><<</content>>>包裹的部分)进行总结:<<<content>>>{content}<<</content>>>"""print('prompt:')print(prompt)return model.invoke(prompt).content# 自定义天气查询工具
def get_current_weather(city):import requestsfrom datetime import datetimeurl = f'https://restapi.amap.com/v3/config/district?keywords={city}&key={amap_api_key}'resp = requests.get(url)# print('行政区划:')# print(resp.json())adcode = resp.json()['districts'][0]['adcode']# adcode = '110000'url = f'https://restapi.amap.com/v3/weather/weatherInfo?city={adcode}&key={amap_api_key}&extensions=base'resp = requests.get(url)"""样例数据{'province': '北京','city': '北京市','adcode': '110000','weather': '晴','temperature': '26','winddirection': '西北','windpower': '4','humidity': '20','reporttime': '2024-05-26 13:38:38','temperature_float': '26.0','humidity_float': '20.0'}"""# print('天气:')# print(resp.json())weather_json = resp.json()['lives'][0]return f"{weather_json['city']}{datetime.strptime(weather_json['reporttime'], '%Y-%m-%d %H:%M:%S').strftime('%m月%d日')}{weather_json['weather']},气温{weather_json['temperature']}摄氏度,{weather_json['winddirection']}{weather_json['windpower']}级"# 工具映射列表
fn_map = {'get_current_weather': get_current_weather,'search_web': search_web
}
4.2 绑定工具

使用下面的语句,将自定义的函数,绑定到大语言模型上

llm_with_tool = model.bind_tools(tools=[{"name": "get_current_weather","description": "根据城市名获取天气","parameters": {"type": "object","properties": {"city": {"type": "string","description": "城市名,例如北京"}},"required": ["city"]}},{"name": "search_web","description": "搜索互联网","parameters": {"type": "object","properties": {"query": {"type": "string","description": "要搜素的内容"}},"required": ["query"]}},],#function_call={"name": "get_current_weather"}
)

5. 使用工具

5.1 天气查询
# 基于大模型获取调用工具及相关参数
import json
ai_msg = llm_with_tool.invoke("北京今天的天气怎么样")
kwargs = json.loads(ai_msg.additional_kwargs['function_call']['arguments'])
print(kwargs)# 调用自定义函数,获得返回结果
res = fn_map[ai_msg.additional_kwargs['function_call']['name']](**kwargs)
print(res)
5.2 网络搜索

输入比较新的内容后,大语言模型会自动判断使用网络搜索工具

# 基于大模型获取调用工具及相关参数
ai_msg = llm_with_tool.invoke("庆余年2好看吗")
kwargs = json.loads(ai_msg.additional_kwargs['function_call']['arguments'])
print(kwargs)# 调用自定义函数,获得返回结果【API获取问题未试验】
#res = fn_map[ai_msg.additional_kwargs['function_call']['name']](**kwargs)#
#print(res)

6. 结构化数据分析

在此处使用函数调用做的一件有用的事情是以结构化格式从给定输入中提取属性:

# 结构化信息提取
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field# 结构化的返回信息,基于该模型生成JSON
class Person(BaseModel):name: str = Field(description="The person's name", required=True)height: float = Field(description="The person's height", required=True)hair_color: str = Field(description="The person's hair color")# Prompt template
prompt = PromptTemplate.from_template("""Alex is 5 feet tall. Claudia is 1 feet taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.Human: {question}AI: """)# Chain
llm = OllamaFunctions(model='qwen:14b', base_url='http://192.2.22.55:11434', format='json',temperature=0)
structured_llm = llm.with_structured_output(Person)
chain01 = prompt | structured_llm
alex = chain01.invoke("Describe Alex")
print(alex)
  • 注意对于英文理解,这里不推荐使用qwen14b,推荐使用llama3等模型

参考资料:

https://blog.csdn.net/engchina/article/details/138006370
https://zhuanlan.zhihu.com/p/701616275

相关文章:

Ollama: 使用Langchain的OllamaFunctions

1. 引言 Function call Langchain的Ollama 的实验性包装器OllamaFunctions&#xff0c;提供与 OpenAI Functions 相同的 API。因为网络的原因&#xff0c;OpenAI Functions不一定能访问&#xff0c;但如果能通过Ollama部署的本地模型实现相关的函数调用&#xff0c;还是有很好…...

java质数的判断 C语言指针变量的使用

1. public static void main(String[] args) {Scanner scnew Scanner(System.in);System.out.println("请输入一个值");int num sc.nextInt();boolean flagtrue;for (int i2;i<num;i){if (num%i0){flagfalse;break;}}if (flag){System.out.println(num"是一…...

TensorFlow面试整理-TensorFlow 数据处理

在 TensorFlow 中,数据处理是构建和训练深度学习模型的重要环节。高效地管理、预处理和增强数据可以显著提高模型的训练效率和性能。TensorFlow 提供了强大的 tf.data API 来帮助处理各种数据集。下面是 TensorFlow 数据处理的详细介绍: 1. tf.data.Dataset API tf.data API …...

vue路由的基本使用

vue路由的基本使用 vue-router简介一、路由配置和使用1、安装2、创建路由实例2、在组件中引用路由 router-view ,如APP根组件中直接引用&#xff1a;3、最后还需要把路由挂载到APP实例中&#xff0c;在main.js中注册路由&#xff1a; 二、路由重定向与别名三、声明式导航1、传统…...

数据结构分类

数据结构(data structure)是计算机存储、组织数据的方式&#xff0c;是带有结构特性的数据元素的集合。是相互之间存在一种或多种特定关系的数据元素的集合&#xff0c;即带“结构”的数据元素的集合。这种“结构”指的是数据元素之间存在的关系&#xff0c;分为逻辑结构和存储…...

【STM32】 TCP/IP通信协议--LwIP介绍

LwIP&#xff08;Lightweight IP&#xff09;是一个轻量级的TCP/IP协议栈&#xff0c;专为嵌入式系统设计&#xff0c;以较小的资源消耗实现完整的网络功能。本文将详细介绍LwIP的基本概念、特点、与TCP/IP的区别以及如何在STM32上使用LwIP实现TCP/IP通信。 1. LwIP的定义和设…...

一些面试题整理

第一章、基础 以下是对上述10道面试题的参考答案&#xff1a; 一、Java语言及性能调优 答案&#xff1a; 线程安全问题是指多个线程同时访问共享资源时可能出现的数据不一致或错误的情况。例如&#xff0c;多个线程同时对一个共享变量进行写操作&#xff0c;如果没有适当的同…...

端口号和ip地址一样吗?区别是什么

在网络通信的世界里&#xff0c;端口号和IP地址是两个不可或缺的概念&#xff0c;它们各自扮演着独特的角色&#xff0c;共同维系着数据在网络中的有序传输。然而&#xff0c;对于许多初学者而言&#xff0c;这两者往往容易被混淆&#xff0c;认为它们是同一事物的不同表述。那…...

深入探讨全流量回溯分析与网络性能监控系统

AnaTraf 网络性能监控系统NPM | 全流量回溯分析 | 网络故障排除工具 随着数据量的急剧增加&#xff0c;传统的网络监控手段面临诸多挑战。在此背景下&#xff0c;全流量回溯分析和网络性能监控系统成为了保障网络正常运作的重要工具。本文将围绕这两个关键词&#xff0c;探讨它…...

python机器人编程——一种3D骨架动画逆解算法的启示(上)

目录 一、前言二、fabrik 算法三、python实现结论PS.扩展阅读ps1.六自由度机器人相关文章资源ps2.四轴机器相关文章资源ps3.移动小车相关文章资源ps3.wifi小车控制相关文章资源 一、前言 我们用blender等3D动画软件时&#xff0c;会用到骨骼的动画&#xff0c;通过逆向IK动力学…...

Flutter开发者必备面试问题与答案02

Flutter开发者必备面试问题与答案02 视频 https://youtu.be/XYSxTb0iA9I https://www.bilibili.com/video/BV1Zk2dYyEBr/ 前言 原文 Flutter 完整面试问题及答案02 本文是 flutter 面试问题的第二讲&#xff0c;高频问答 10 题。 正文 11. PageRoute 是什么&#xff1f; …...

拥抱真实:深度思考之路,行动力的源泉

在纷繁复杂的现代社会&#xff0c;人们往往被表象迷惑&#xff0c;忙碌于各种事务之中&#xff0c;却很少停下来进行深度思考。这种忙碌往往是表面的、无效的&#xff0c;因为它缺乏对自我和目标的深刻理解与追求。提升行动力&#xff0c;避免假勤奋&#xff0c;关键在于深度思…...

【Python爬虫实战】深入理解Python异步编程:从协程基础到高效爬虫实现

#1024程序员节&#xff5c;征文# &#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、异步 &#xff08;一&#xff09;核心概念 &#xff08;二&#xff09;…...

OpenCV图像处理方法:腐蚀操作

腐蚀操作 前提 图像数据为二值的&#xff08;黑/白&#xff09; 作用 去掉图片中字上的毛刺 显示图片 读取一个图像文件&#xff0c;并在一个窗口中显示它。用户可以查看这个图像&#xff0c;直到按下任意键&#xff0c;然后程序会关闭显示图像的窗口 # cv2是OpenCV库的P…...

PG数据库之流复制详解

一、流复制的定义 PostgreSQL流复制&#xff08;Streaming Replication&#xff09;是一种数据复制技术&#xff0c;它允许实时传输数据更改&#xff0c;从而在主服务器和一个或多个备用服务器之间保持数据同步。流复制是PostgreSQL数据库管理系统&#xff08;DBMS&#xff09…...

Python酷库之旅-第三方库Pandas(174)

目录 一、用法精讲 801、pandas.Categorical类 801-1、语法 801-2、参数 801-3、功能 801-4、返回值 801-5、说明 801-6、用法 801-6-1、数据准备 801-6-2、代码示例 801-6-3、结果输出 802、pandas.Categorical.from_codes方法 802-1、语法 802-2、参数 802-3、…...

【Linux网络】基于TCP的全连接队列与文件、套接字、内核之间的关系

W...Y的主页 &#x1f60a; 代码仓库管理&#x1f495; 前言&#xff1a;之前我们已经学习了TCP传输协议&#xff0c;而无论是TCP还是UDP都是使用socket套接字进行网络传输的&#xff0c;而TCP的socket是比UDP复杂的&#xff0c;当时我们学习TCPsocket编程时使用listen函数进行…...

IDE(集成开发环境)

IDE&#xff08;集成开发环境&#xff09;是软件开发过程中不可或缺的工具&#xff0c;它集成了代码编写功能、分析功能、编译器、调试器等开发工具&#xff0c;旨在提高开发效率。不同的IDE支持不同的语言和框架&#xff0c;下面是一些通用的IDE使用技巧和插件推荐&#xff0c…...

一键导入Excel到阿里云PolarDB-MySQL版

今天&#xff0c;我将分享如何一键导入Excel到阿里云PolarDB-MySQL版数据库。 准备数据 这里&#xff0c;我们准备了一张excel表格如下&#xff1a; 连接到阿里云PolarDB 打开的卢导表&#xff0c;点击新建连接-选择阿里云PolarDB-MySQL版。如果你还没有这个工具&#xff0c;…...

Oracle有哪些版本

目录 Oracle 1(1979年) Oracle 2(1983年) Oracle 7(1992年) Oracle 8i(1999年) Oracle 9i(2001年) Oracle 10g(2004年) Oracle 11g(2007年) Oracle 12c(2013年) Oracle 18c(2018年) Oracle 19c(2019年) Oracle 21c(2023年) Oracle 23ai(202…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...