当前位置: 首页 > news >正文

深度学习:匿名函数lambda函数的使用与numerical_gradient函数

背景:
假设我们有一个简单的线性回归模型,其损失函数是均方误差(MSE):

class LinearModel:def __init__(self):self.W = np.random.randn(1, 1)  # 初始化权重def predict(self, x):return np.dot(x, self.W)  # 线性预测def loss(self, x, t):y_pred = self.predict(x)return np.mean((y_pred - t) ** 2)  # 均方误差# 创建模型实例
model = LinearModel()# 定义输入数据和目标标签
x = np.array([[1], [2], [3]])
t = np.array([[2], [4], [6]])# 定义损失函数
loss_W = lambda W : model.loss(x, t)# 计算损失
current_loss = loss_W(model.W)
print(current_loss)

loss_W = lambda W : self.loss(x, t)
是一个 lambda 函数,它接受一个参数 W 并返回损失函数的值。具体来说:

lambda W : self.loss(x, t) 定义了一个匿名函数(lambda 函数),它接受一个参数 W。self.loss(x, t) 是损失函数的调用,其中 x 和 t 是损失函数的输入参数。

因此,loss_W 的作用是将参数 W 传递给损失函数 self.loss,并返回损失函数的计算结果。这里的 W 通常是模型中的权重参数,而 x 和 t 分别是输入数据和目标标签。

总结一下,loss_W 是一个接受权重参数 W 并返回损失值的函数。
当然可以将 loss_W 写成一个普通的函数,而不是使用 lambda 表达式。以下是如何将 loss_W 写成一个普通函数的示例:

class LinearModel:def __init__(self):self.W = np.random.randn(1, 1)  # 初始化权重def predict(self, x):return np.dot(x, self.W)  # 线性预测def loss(self, x, t):y_pred = self.predict(x)return np.mean((y_pred - t) ** 2)  # 均方误差# 创建模型实例
model = LinearModel()# 定义输入数据和目标标签
x = np.array([[1], [2], [3]])
t = np.array([[2], [4], [6]])# 定义损失函数
def loss_W(W):model.W = W  # 更新模型的权重return model.loss(x, t)# 计算损失
current_loss = loss_W(model.W)
print(current_loss)

在这个例子中:

loss_W 是一个普通的函数,它接受 W 作为参数。在函数内部,首先更新模型的权重 model.W 为传入的 W。然后调用 model.loss(x, t) 计算损失,并返回计算结果。

这种方式与使用 lambda 函数的效果是相同的,但代码的可读性可能会有所提高,特别是对于复杂的逻辑。

以下是梯度的代码,通过下述代码更加深入了解lambda:

def numerical_gradient(f, x):h = 1e-4grad = np.zeros_like(x)for idx in range(x.size):tmp_val = x[idx]x[idx] = tmp_val + hfxh1 = f(x)x[idx] = tmp_val - hfxh2 = f(x)grad[idx] = (fxh1 - fxh2) / (2*h)x[idx] = tmp_valreturn grad

下面的numerical_gradient函数是调用上面函数的

  def numerical_gradient(self, x, t):loss_W = lambda W: self.loss(x, t)grads = {}grads['W1'] = numerical_gradient(loss_W, self.params['W1'])grads['b1'] = numerical_gradient(loss_W, self.params['b1'])grads['W2'] = numerical_gradient(loss_W, self.params['W2'])grads['b2'] = numerical_gradient(loss_W, self.params['b2'])return grads

loss函数为:

   def predict(self, x):W1, b1 = self.params['W1'], self.params['b1']W2, b2 = self.params['W2'], self.params['b2']a1 = np.dot(x, W1) + b1z1 = sigmoid(a1)a2 = np.dot(z1, W2) + b2y = a2return ydef loss(self, x, t):y = self.predict(x)return self.lastLayer.forward(y, t)

所以在下述代码中

 loss_W = lambda W: self.loss(x, t)grads = {}grads['W1'] = numerical_gradient(loss_W, self.params['W1'])grads['b1'] = numerical_gradient(loss_W, self.params['b1'])grads['W2'] = numerical_gradient(loss_W, self.params['W2'])grads['b2'] = numerical_gradient(loss_W, self.params['b2'])

例如grads[‘W1’] = numerical_gradient(loss_W, self.params[‘W1’]) 会调用第一个 numerical_gradient函数用
(f(x+h) - f(x-h))/2*h计算梯度,而由于匿名函数有更新参数的作用,所以当x=self.params[‘W1’]时,计算f(x+h)本例即匿名函数loss_W时会自动将模型中的self.params[‘W1’]=self.params[‘W1’]+h,作用就是匿名函数返回的self.loss(x, t)调用的predict函数里的对应参数会相应更新,这样即可获得在更新后的W1条件下对应的predict输出值从而计算loss。
同理以下
grads[‘b1’] = numerical_gradient(loss_W, self.params[‘b1’])
grads[‘W2’] = numerical_gradient(loss_W, self.params[‘W2’])
grads[‘b2’] = numerical_gradient(loss_W, self.params[‘b2’])
也是一样的原理,使用匿名函数可以在改变后的参数下,返回需要的函数值,很方便。

相关文章:

深度学习:匿名函数lambda函数的使用与numerical_gradient函数

背景: 假设我们有一个简单的线性回归模型,其损失函数是均方误差(MSE): class LinearModel:def __init__(self):self.W np.random.randn(1, 1) # 初始化权重def predict(self, x):return np.dot(x, self.W) # 线性预…...

PHP数据类型

几种常用的数据类型: String(字符串) Integer(整型) Float(浮点型) Boolean(布尔型) NULL(空值) Array(数组) Obje…...

2FA-双因素认证

双因素认证(2FA,Two-Factor Authentication)是一种提高安全性的方法,要求用户在登录或进行某些敏感操作时提供两种不同类型的身份验证信息。这种方法通过引入第二层验证,增加了账户被未经授权访问的难度。 项目结构 …...

解决 Python 中的 TypeError 错误

解决 Python 中的 TypeError 错误 在 Python 编程中,TypeError 是一种常见的错误,通常发生在尝试对不兼容的类型进行操作时。了解这个错误的原因以及如何有效解决它,对于提高代码的可靠性和可读性至关重要。本文将详细讨论 TypeError 的成因…...

快速学会C 语言基本概念和语法结构

😀前言 本篇博文是关于C 语言的基本概念和语法结构,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到大家,您的满意是我的动力&a…...

Python酷库之旅-第三方库Pandas(172)

目录 一、用法精讲 791、pandas.UInt8Dtype类 791-1、语法 791-2、参数 791-3、功能 791-4、返回值 791-5、说明 791-6、用法 791-6-1、数据准备 791-6-2、代码示例 791-6-3、结果输出 792、pandas.UInt16Dtype类 792-1、语法 792-2、参数 792-3、功能 792-4、…...

Linux系统下minio设置SSL证书进行HTTPS远程连接访问

文章目录 1.配置SSL证书使用HTTPS访问2.MINIO SDK 忽略证书验证3.使用受信任的证书 1.配置SSL证书使用HTTPS访问 生成域名对应的SSL证书,下载Apache版本,我目前只发现Apache这个里面有对应的私钥和证书 私钥重命名为private.key证书重命名为public.crt&…...

npm 包的命名空间介绍,以及@typescript-eslint/typescript-eslint

npm 包的命名空间是一个重要的概念,用于组织和管理相关的包。通过命名空间,开发者可以避免命名冲突、增强包的可读性和可维护性。以下是关于 npm 命名空间的详细介绍,并以 typescript-eslint 作为示例。 1. 命名空间的结构 命名空间的格式为…...

ecovadis评估是什么,有什么提成自己评分等级

EcoVadis评估是一个企业社会责任(CSR)评级平台,旨在评估全球供应链的可持续性和道德情况。以下是对EcoVadis评估的详细介绍以及提升其评分等级的方法: 一、EcoVadis评估概述 定义:EcoVadis评估通过一系列框架评估公司…...

Vue3中ref、toRef和toRefs之间有什么区别?

前言 Vue 3 引入了组合式 API,其中 ref、toRef 和 toRefs 是处理响应式数据的核心工具。作为高级计算机工程师,我们有必要深入理解这些工具的细微差别,以便在实际项目中更加高效地管理状态。本文将详细解析 ref、toRef 和 toRefs 的区别&…...

react开发技巧

/* eslint-disable no-useless-escape */ const Validator { isEmail: /^([a-zA-Z0-9_\.\-])\(([a-zA-Z0-9\-])\.)([a-zA-Z0-9]{2,4})$/, // 校验邮箱 isPhoneNumber: /^1[3456789]\d{9}$/, // 手机号码验证 isMobileNumber: /^(\(\d{3,4}\)|\d{3,4}-|\s)?\d{7,14}$/, //…...

HarmonyOS第一课——HarmonyOS介绍

HarmonyOS第一课 HarmonyOS介绍 HarmonyOS是新一代的智能终端操作系统(泛终端服务的载体); 智慧互联协同,全场景交互体验; 核心技术理念: 一次开发 多次部署: 预览 可视化开发UI适配 事件交…...

XCode16中c++头文件找不到解决办法

XCode16中新建Framework&#xff0c;写完自己的c代码后&#xff0c;提示“<string> file not found”等诸如此类找不到c头文件的错误。 工程结构如下&#xff1a; App是测试应用&#xff0c;BoostMath是Framework。基本结构可以参考官方demo&#xff1a;Mix Swift and …...

CSS - 保姆级面试基础扫盲版本一

盒子模型 盒子模型定义&#xff1a; 当对一个盒子模型进行文档布局的时候&#xff0c;浏览器的渲染引擎会根据标准之一的CSS盒子模型&#xff08;CSS basic box model&#xff09;&#xff0c;将所有元素表示成一个个矩阵盒子。 一个盒子通常由四部分组成&#xff1a;border p…...

51c自动驾驶~合集2

我自己的原文哦~ https://blog.51cto.com/whaosoft/11491137 #BEVWorld BEV潜在空间构建多模态世界模型&#xff0c;全面理解自动驾驶~一、引言 世界模型建模了有关环境的知识&#xff0c;其可以通过给定的条件对未来进行合理的想象。未来想象要求世界模型具有物理规律的理解…...

Redis后台任务有哪些

Redis后台任务 为了有更好的性能表现&#xff0c;redis对于一些比较耗时的操作会异步执行&#xff0c;不阻塞线上请求。文章从源码(redis7.0)来看&#xff0c;aof、rdb文件的关闭&#xff0c;aof文件的刷盘以及部分内存释放会采用异步方式&#xff0c;在后台线程中执行。接下来…...

TPair<TKey, TValue> 键值对

在 Delphi&#xff08;或更准确地说是 Object Pascal&#xff0c;Delphi 的编程语言&#xff09;中&#xff0c;TList<T> 是泛型列表的一个实现&#xff0c;其中 T 是列表中元素的类型。TPair<TKey, TValue> 是一个包含两个元素的记录&#xff08;record&#xff0…...

【杂谈】城市规划教育的危与机

城市规划教育的危与机 &#xff08;赵燕菁 原文为作者在 第21届中国城市规划学科发展论坛上的发言&#xff0c;有删减和改动&#xff09;如有侵权&#xff0c;立即删除 过去几年&#xff0c;尤其是从2022年后房地产市场的下行开始&#xff0c;中国的城市规划陷入前所未有的危…...

金融工程--pine-script 入门

背景 脚本基本组成 指标 常见的趋势类指标&#xff1a;均线类(MAs)、支撑/压力位(Support/Resistance)、趋势线(Trend Lines)、趋势通道(Trend Channels)、一目均衡表(Ichimoku)和 艾略特波浪(ElliotWave)。 均线指标 策略 策略种类 在TradingView上&#xff0c;有许多交易…...

Vue3 跨标签页或跨窗口通信

在 Vue 应用中&#xff0c;跨标签页或跨窗口的通信通常涉及到两个或多个浏览器标签页之间的信息共享。由于每个标签页或窗口都是独立的 JavaScript 执行环境&#xff0c;它们不能直接通过 Vue 或其他 JavaScript 库来直接相互通信。但是&#xff0c;有一些方法可以实现这种跨标…...

Ollama: 使用Langchain的OllamaFunctions

1. 引言 Function call Langchain的Ollama 的实验性包装器OllamaFunctions&#xff0c;提供与 OpenAI Functions 相同的 API。因为网络的原因&#xff0c;OpenAI Functions不一定能访问&#xff0c;但如果能通过Ollama部署的本地模型实现相关的函数调用&#xff0c;还是有很好…...

java质数的判断 C语言指针变量的使用

1. public static void main(String[] args) {Scanner scnew Scanner(System.in);System.out.println("请输入一个值");int num sc.nextInt();boolean flagtrue;for (int i2;i<num;i){if (num%i0){flagfalse;break;}}if (flag){System.out.println(num"是一…...

TensorFlow面试整理-TensorFlow 数据处理

在 TensorFlow 中,数据处理是构建和训练深度学习模型的重要环节。高效地管理、预处理和增强数据可以显著提高模型的训练效率和性能。TensorFlow 提供了强大的 tf.data API 来帮助处理各种数据集。下面是 TensorFlow 数据处理的详细介绍: 1. tf.data.Dataset API tf.data API …...

vue路由的基本使用

vue路由的基本使用 vue-router简介一、路由配置和使用1、安装2、创建路由实例2、在组件中引用路由 router-view ,如APP根组件中直接引用&#xff1a;3、最后还需要把路由挂载到APP实例中&#xff0c;在main.js中注册路由&#xff1a; 二、路由重定向与别名三、声明式导航1、传统…...

数据结构分类

数据结构(data structure)是计算机存储、组织数据的方式&#xff0c;是带有结构特性的数据元素的集合。是相互之间存在一种或多种特定关系的数据元素的集合&#xff0c;即带“结构”的数据元素的集合。这种“结构”指的是数据元素之间存在的关系&#xff0c;分为逻辑结构和存储…...

【STM32】 TCP/IP通信协议--LwIP介绍

LwIP&#xff08;Lightweight IP&#xff09;是一个轻量级的TCP/IP协议栈&#xff0c;专为嵌入式系统设计&#xff0c;以较小的资源消耗实现完整的网络功能。本文将详细介绍LwIP的基本概念、特点、与TCP/IP的区别以及如何在STM32上使用LwIP实现TCP/IP通信。 1. LwIP的定义和设…...

一些面试题整理

第一章、基础 以下是对上述10道面试题的参考答案&#xff1a; 一、Java语言及性能调优 答案&#xff1a; 线程安全问题是指多个线程同时访问共享资源时可能出现的数据不一致或错误的情况。例如&#xff0c;多个线程同时对一个共享变量进行写操作&#xff0c;如果没有适当的同…...

端口号和ip地址一样吗?区别是什么

在网络通信的世界里&#xff0c;端口号和IP地址是两个不可或缺的概念&#xff0c;它们各自扮演着独特的角色&#xff0c;共同维系着数据在网络中的有序传输。然而&#xff0c;对于许多初学者而言&#xff0c;这两者往往容易被混淆&#xff0c;认为它们是同一事物的不同表述。那…...

深入探讨全流量回溯分析与网络性能监控系统

AnaTraf 网络性能监控系统NPM | 全流量回溯分析 | 网络故障排除工具 随着数据量的急剧增加&#xff0c;传统的网络监控手段面临诸多挑战。在此背景下&#xff0c;全流量回溯分析和网络性能监控系统成为了保障网络正常运作的重要工具。本文将围绕这两个关键词&#xff0c;探讨它…...

python机器人编程——一种3D骨架动画逆解算法的启示(上)

目录 一、前言二、fabrik 算法三、python实现结论PS.扩展阅读ps1.六自由度机器人相关文章资源ps2.四轴机器相关文章资源ps3.移动小车相关文章资源ps3.wifi小车控制相关文章资源 一、前言 我们用blender等3D动画软件时&#xff0c;会用到骨骼的动画&#xff0c;通过逆向IK动力学…...

开封旅游网站建设网页推广/seo关键字排名优化

上一节中我们已经基本完成了django项目部署到nginx&#xff0c;这一节我们将http改为https&#xff0c;提升访问的安全性。 我是T型人小付&#xff0c;一位坚持终身学习的互联网从业者。喜欢我的博客欢迎在csdn上关注我&#xff0c;如果有问题欢迎在底下的评论区交流&#xff0…...

济南网站设计公司富/网站关键词优化排名软件

自定义学习率代码可以加快训练的速度&#xff0c;下面是代码的内容和学习率的截图。 import matplotlib.pyplot as plt def lrfn(epoch):LR_START 0.00001LR_MAX 0.00005 *8#* strategy.num_replicas_in_syncLR_MIN 0.00001LR_RAMPUP_EPOCHS 5LR_SUSTAIN_EPOCHS 5LR_EXP_…...

做网站要考虑的问题/如何让百度搜索排名靠前

SQLSERVER中NULL位图的作用 首先感谢宋沄剑提供的文章和sqlskill网站&#xff1a;www.sqlskills.com&#xff0c;看下面文章之前请先看一下下面两篇文章 SQL Server误区30日谈-Day6-有关NULL位图的三个误区 char nchar varchar nvarchar的区别 在SQLSERVER内部有很多地方都使用…...

星沙做淘宝店铺网站/做企业推广的公司

DevC作为一款功能强大的C集成开发环境&#xff0c;为用户很好的提供了进行编程学习与工作的环境&#xff0c;小编了解到很多初学用户不知道怎么建立头文件&#xff0c;如果你还不知道具体的操作方法&#xff0c;就赶快来看看下面的教程吧&#xff0c;小编带你快速入门建立头文件…...

哪个网站可以自己做行程/百度推广费用多少钱

简介 有时候我们可能会需要限定路由访问次数这样的需求。 在laravel中又一个内置中间件可以帮我们实现这个需求 # throttle:3,1 第一个参数&#xff0c;3>1分钟内只能访问三次&#xff0c;第二个参数,1>设定为1分钟 Route::get(test,TestControllerindex)…...

网页页面下载/黑帽seo技术培训

variable-precision SWAR算法&#xff1a;计算Hamming Weight 转自我的Github最近看书看到了一个计算Hamming Weight的算法&#xff0c;觉得挺巧妙的&#xff0c;纪录一下。Hamming Weight&#xff0c;即汉明重量&#xff0c;指的是一个位数组中非0二进制位的数量。对于这个问题…...