大模型是否具备推理能力?解读苹果新论文:GSM-Symbolic和GSM8K
在人工智能领域,大模型的推理能力一直备受关注。OpenAI的GPT-4和其他大模型的表现令人惊叹,但究竟是否具备真正的数学推理和抽象逻辑能力?最近,苹果的研究人员发表了一篇题为“GSM-Symbolic:理解大语言模型中数学推理的局限性”的论文,深度分析了大模型的数学推理表现,揭示了其在抽象逻辑和推理任务上的局限性。本文将详细解读这篇论文,并探讨目前主流模型在逻辑推理方面的核心问题。
1. 大模型推理能力的现状
当前大模型在数学推理测试中的优异表现令许多人认为这些模型或许已经具备“类人”推理能力。然而,苹果团队通过对GPT-4、LLaMA、Phi等多个闭源和开源模型的研究发现,这些模型并未表现出真正的逻辑推理,而更像是复杂的“模式匹配器”。也就是说,它们依赖于已有的训练数据和模式识别来回答问题,而非逻辑化地推导答案。
苹果研究团队认为,随着大模型训练数据的增多,数据污染不可避免——模型可能在训练数据中接触过评估数据集的题目,因此即便模型表现出色,也可能仅仅是记住了答案,而不是通过逻辑分析解决问题。
1.1 使用GSM8K数据集进行初步测试
GSM8K数据集包含了8000个小学难度的数学问题,并一直是大模型数学推理能力的标准测试集。大模型的GSM8K表现从初期的GPT-3的35%逐步提高到现在的85%以上。但这种提升可能源于模型的记忆性,而非逻辑推理能力。
1.2 数据污染问题及其影响
由于GSM8K数据集在2021年发布,目前主流的大模型训练数据中可能包含了该数据集的一部分问题。模型可能通过“背答案”来解答GSM8K题目,而非真正理解问题的逻辑。因此,使用GSM8K数据集来评估模型的推理能力存在局限性。
2. GSM-Symbolic:苹果新数据集的设计
为更客观地测试大模型的数学推理能力,苹果团队开发了新数据集GSM-Symbolic,对GSM8K数据集进行了重新设计和变化,以避开数据污染问题。具体来说,GSM-Symbolic通过更改题目中的数字、称谓、玩具种类等元素来生成多个“新”题目,并设计了额外的数据集GSM-NoOp,在问题中加入无关信息以考察模型对冗余数据的敏感度。
2.1 GSM-Symbolic的结果分析
在GSM-Symbolic的数据集上,即便是GPT-4等性能优越的模型,准确率显著下降。大多数模型在更换题干后准确率下降幅度大于1%-2%。例如,只改变题目中的名称和数字即可造成模型性能显著下降,显示出这些模型在遇到陌生信息时会产生认知困扰,无法系统性地推导答案。
2.2 增加无关信息对模型表现的影响
苹果团队还在GSM-NoOp数据集中加入无关信息,发现所有模型的准确率都显著下降。比如,Phi-3-mini模型准确率下降超过65%,即便是GPT-4等表现优异的模型也出现了接近20%的准确率下降。这表明,当前大模型在处理多余信息时缺乏必要的区分和排除机制,会将冗余信息当作逻辑推理的一部分。
3. “模式匹配”还是“逻辑推理”?
苹果的研究团队认为,现有大模型更接近于“模式匹配器”而非“推理器”。其推测是,大模型将任务问题视作一种子图匹配的问题,将其逐步映射到训练数据中存在的类似子问题上,而并非依靠内在逻辑分析逐步解答问题。
3.1 线性化子图匹配
一种重要理论解释是“线性化子图匹配”——任务问题可以被表示成有向图,大模型通过图中子图和已有数据的相似性进行近似推理。然而,模型并未在逻辑上分解任务步骤,而是依赖模式识别。例如,在乘法问题中,模型未表现出人类推理的能力,而是仅在常见乘积(如7×4=28)上取得了成功,在更复杂乘法上则表现糟糕。
3.2 实验验证:乘法任务
研究团队在乘法任务上测试模型表现,如两位数和三位数的乘法,发现大模型在训练集上常见的小乘法表现优越,但在更大范围的乘法上表现糟糕。说明模型在更复杂的问题上缺乏系统性的分解与分析,仅在有限子图范围内完成匹配,而非通过逻辑化思维解决问题。
4. 大模型的推理局限性:现状与展望
苹果的研究表明,大模型在多步推理和逻辑归纳上存在重大缺陷,且在遇到冗余信息、问题格式变动等干扰时表现不佳。其推理更像是记忆和近似匹配而非人类逻辑分析。类似的实验也出现在谷歌DeepMind等研究中,进一步印证了大模型的推理局限性。
4.1 当前局限性和未来挑战
- 过度依赖数据匹配:当前大模型倾向于依赖数据匹配,并非真正理解问题。即便在GPT-4等优异模型上也会出现复杂问题回答失败的现象。
- 多步逻辑化推理能力不足:大模型在跨多个逻辑步骤的问题中显现出推理能力的不足,无法完全理解任务的多层次结构。
- 抗干扰能力不足:在数据中加入无关信息时,大模型无法有效识别干扰项,这也对AI系统的可靠性提出了挑战。
4.2 未来的改进方向
苹果团队的研究暗示,通过简单堆积数据和参数并不能解决大模型的推理缺陷。Gary Marcus等学者建议,将神经网络和符号逻辑相结合,通过引入变量与操作之间的抽象关系来提升模型的逻辑化能力。这可能是未来人工智能领域的重要研究方向之一。
5. 总结
苹果的GSM-Symbolic论文揭示了大模型在数学推理和逻辑分析方面的核心缺陷,指出了其模式匹配的特性和逻辑推理的不足。尽管GPT-4和其他大模型表现出惊人的模式匹配能力,但它们的推理本质仍远未达到人类智能的水准。未来,如何结合神经符号系统、提升模型的逻辑化推理能力,或将是人工智能发展的关键课题。
 
相关文章:
 
大模型是否具备推理能力?解读苹果新论文:GSM-Symbolic和GSM8K
在人工智能领域,大模型的推理能力一直备受关注。OpenAI的GPT-4和其他大模型的表现令人惊叹,但究竟是否具备真正的数学推理和抽象逻辑能力?最近,苹果的研究人员发表了一篇题为“GSM-Symbolic:理解大语言模型中数学推理的…...
 
自动化部署-02-jenkins部署微服务
文章目录 前言一、配置SSH-KEY1.1 操作jenkins所在服务器1.2 操作github1.3 验证 二、服务器安装git三、jenkins页面安装maven四、页面配置自动化任务4.1 新建任务4.2 选择4.3 配置参数4.4 配置脚本 五、执行任务5.1 点击执行按钮5.2 填写参数5.3 查看日志 六、查看服务器文件七…...
 
HTB:Analytics[WriteUP]
目录 连接至HTB服务器并启动靶机 1.How many open TCP ports are listening on Analytics? 2.What subdomain is configured to provide a different application on the target web server? 3.What application is running on data.analytical.htb? 4.What version of…...
 
【每日题解】3211. 生成不含相邻零的二进制字符串
给你一个正整数 n。 如果一个二进制字符串 x 的所有长度为 2 的 子字符串 中包含 至少 一个 "1",则称 x 是一个 有效 字符串。 返回所有长度为 n 的 有效 字符串,可以以任意顺序排列。 示例 1: 输入: n 3 输出&a…...
 
Nginx、Tomcat等项目部署问题及解决方案详解
目录 前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的常见原因 2. 端口开启问题2.1 Windows环境下的端口开放2.2 Linux环境下的端口开放 3. 重视日志分析3.1 Nginx日志分析3.2 Tomcat日志分析 4. 开发环境与部署后运行结果不同4.1 开发环境与生产…...
【PythonWeb开发】Flask-RESTful参数解析
flask-restful中的reqparse.RequestParser是一个用于解析和验证参数的工具。它可以帮助开发者从请求中提取参数,并确保这些参数符合预期的格式和类型。参数解析的意思就是规范化传入的参数并获取到这些参数。 一、什么是 reqparse.RequestParser? reqpa…...
 
gcc与mingw64版本介绍
三类编译器 GCC,全称为GNU Compiler Collection,是一个强大的编译器集合,它不仅支持C和C语言,还支持Fortran、Ada、Java等多种编程语言的编译。在GCC工具链中,gcc和g是两个核心的编译器工具。gcc是专门用于编译C语言程…...
CSS3新增长度单位
CSS3新增长度单位 rem:根元素字体的倍数,只与根元素字体大小有关;vw:占视口宽度的百分比;vh:占视口高度的百分比;vmax:占视口中宽和高最大的百分比;vmin:占视…...
 
【Spring】创建Spring项目前的配置工作
🥊作者:一只爱打拳的程序猿,Java领域新星创作者,CSDN、阿里云社区优质创作者。 🤼文章收录于:Spring 目录 1.下载Spring Initializr 2.配置Spring国内源 3.添加Spring框架的支持(pom.xml) 4.刷新Maven仓…...
docker 安装部署 nginx
命令 docker run \ -p 15008:80 \ --name nginx1.21.6 \ -v /iepms/nginx/conf/nginx.conf:/etc/nginx/nginx.conf \ -v /iepms/nginx/conf/conf.d:/etc/nginx/conf.d \ -v /iepms/nginx/log:/var/log/nginx \ -v /iepms/nginx/html:/usr/share/nginx/html \ -d 192.168.1.103…...
 
黑马数据库学习笔记
课程地址 (基础篇)MySQL的启动 mysql 默认使用 3306 端口 在 centos下,启动 mysql 数据库:service mysqld start; 查看状态/启动/停止/重启:systemctl status/start/stop/restart mysqld; 登录到mysql数据库&…...
 
MYSQL-SQL-03-DQL(Data Query Language,数据查询语言)(单表查询)
DQL(数据查询语言) DQL英文全称是Data Query Language(数据查询语言),数据查询语言,用来查询数据库中表的记录。 查询关键字: SELECT 在一个正常的业务系统中,查询操作的频次是要远高于增删改的,当我们去访…...
 
【数据结构和算法】三、动态规划原理讲解与实战演练
目录 1、什么是动态规划? 2、动态规划实战演练 2.1 力扣题之爬楼梯问题 (1)解题思路1: (2)解题思路2: (3)动态规划(DP):解题思路 (4&#x…...
交叉编译 perl-5.40.0(riscv64)
交叉编译 perl-5.40.0(riscv64) https://arsv.github.io/perl-cross/usage.html https://github.com/arsv/perl-cross 借助 perl-cross 进行交叉编译 https://www.perl.org/get.html#unix_like 这里获取 perl-5.40.0 的源码 https://github.com/arsv/pe…...
 
Leetcode 搜索旋转排序数组
这段代码是用于解决LeetCode第33题“搜索旋转排序数组”的Java解法。以下是对该算法思想的中文解释: 算法思想 二分查找的基本思路: 由于数组是部分有序的(被旋转过),我们可以利用二分查找的思想,逐步缩小…...
 
Spring Task—定时任务
Spring Task 是 Spring 提供的一种轻量级定时任务调度功能,内置在 Spring 框架中。与 Quartz 等重量级调度框架相比,Spring Task 使用简便,无需额外依赖,适合在简单的调度任务场景中使用。通过注解配置方式,开发者可以…...
 
Spring Boot 应用开发概述
目录 Spring Boot 应用开发概述 Spring Boot 的核心特性 Spring Boot 的开发模式 Spring Boot 在企业应用开发中的优势 结论 Spring Boot 应用开发概述 Spring Boot 是由 Pivotal 团队开发的一个框架,基于 Spring 框架,旨在简化和加速基于 Spring …...
 
Chrome谷歌浏览器加载ActiveX控件之allWebDesktop控件介绍
背景 allWebDesktop控件是一款方便用户在线打开各类文档的OA办公控件。它设计比较轻巧,充分利用计算机程序资源打开文档,并将程序窗口嵌入到allWebDesktop控件区域内,从而实现浏览器内打开各类文档效果。 allWebPlugin中间件是一款为用户提供…...
 
GitHub Star 数量前 5 的开源应用程序生成器
欢迎来的 GitHub Star 数量排名系列文章的第 7 篇——最受欢迎的应用程序生成器。 之前我们已经详细探讨过:在 GitHub 上最受欢迎的——无代码工具、低代码项目、内部工具、CRUD项目、自部署项目和 Airtable 开源替代品。累计超过 50 个优质项目!&#…...
 
DBC文件当中新建CANFD等类型的报文
同学最近有添加CANFD报文的需求,需要用到CANFD类型报文的DBC文件,这下就难住我了,我之前用的DBC文件只有“CAN Standard”“CAN Extended”两种类型,压根没见过FD的。 后来他找到了项目之前的DBC,打开来看,…...
 
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
 
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
 
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
 
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
 
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
 
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
