【设计模式】使用python 实践框架设计
-
单一职责原则(SRP):一个类应该只有一个职责,意味着该类只应该有一个引起变化的原因。这使得代码更易于维护和理解。
-
开放封闭原则(OCP):软件实体(类、模块、函数等)应该对扩展开放,对修改封闭。这意味着可以通过添加新代码来扩展功能,而不是修改现有代码。
-
里氏替换原则(LSP):子类对象应该能够替换父类对象而不影响程序的正确性。这要求子类必须完全实现父类的行为。
-
接口隔离原则(ISP):不应强迫一个类依赖于它不使用的接口。多个特定客户端接口要好于一个通用接口。
-
依赖反转原则(DIP):高层模块不应该依赖于低层模块,两者都应该依赖于抽象。抽象不应该依赖于细节,细节应该依赖于抽象。
-
合成复用原则(CRP):优先使用对象组合而不是继承来达到复用的目的。组合可以提供更灵活的解决方案,并且避免了继承带来的复杂性。
结合机器学习中大模型微调的数据处理场景,尝试梳理学习以下设计模式:
- 模板方法模式 (Template Method):在方法中定义算法框架。
- 策略模式 (Strategy):定义一系列算法,使算法可以互换,提高系统的灵活性。
- 组合模式 (Composite):部分-整体层次关系,简化对复杂树形结构的操作。
- 适配器模式 (Adapter):将一个接口转换为另一个接口,解决不兼容接口的问题,增加系统的可复用性。
- 建造者模式 (Builder):构建复杂对象的步骤,逐步配置对象,便于管理和扩展。
- 工厂方法模式 (Factory Method):需要创建对象时,子类决定具体类,增加新形状时,不需要修改现有代码,只需实现新类。
#coding:utf8
import pandas as pd
from abc import ABC, abstractmethod
import jsonclass Trainset:def __init__(self):self.raw_data_path = Noneself.feature_column_list = Noneself.label_strategy = Noneself.trainset_ratio = Noneself.train_data = Noneself.test_data = Noneself.oversample = Noneself.data_format = Nonedef __str__(self):return f"raw data path: {self.raw_data_path}\nfeature_column_list: {self.feature_column_list}\nlabel_strategy: {self.label_strategy}\n" \f"trainset_ratio: {self.trainset_ratio}\ntrain_df: {len(self.train_data)}\ntest_df: {len(self.test_data)}\nsample:\n{self.train_data.iloc[7]}"def save_train_data(self, path):with open(path, "w", encoding="utf8") as fout:for i in range(len(self.train_data)):fout.write(self.train_data.iloc[i]+"\n")def save_test_data(self, path):with open(path, "w", encoding="utf8") as fout:for i in range(len(self.test_data)):fout.write(self.test_data.iloc[i] + "\n")
class LabelStrategy(ABC):@staticmethod@abstractmethoddef gen_label(row):passclass ImportantType1(LabelStrategy):@staticmethoddef gen_label(row):if row['是否重要新闻标签'] == 1 and row['判断条件一'] == 'Y':return 1else:return 0class ImportantType2(LabelStrategy):@staticmethoddef gen_label(row):if row['是否重要新闻标签'] == 1 and row['判断条件二'] == 'Y':return 1else:return 0class ImportantType3(LabelStrategy):@staticmethoddef gen_label(row):if row['是否重要新闻标签'] == 1 and row['判断条件三'] == 'Y':return 1else:return 0class ImportantType4(LabelStrategy):@staticmethoddef gen_label(row):if row['是否重要新闻标签'] == 1 and row['判断条件四'] == 'Y':return 1else:return 0class DataFormat(ABC):@staticmethod@abstractmethoddef transform(row):passclass BertDataFormat(DataFormat):@staticmethoddef transform(row):return str(row['label']) + "\t" + row["feature"]class QwenDataFormat(DataFormat):prompt = "请判断以下新闻会不会对对应股票价格造成重大负面影响,造成股价异常下跌?会导致股价大幅下跌输出1,不会输出0。新闻为:"@classmethod# classmethod和staticmethod的共同的是可以不实例化类就调用类内方法,区别是classmethod可以通过cls使用类内变量,而staticmethod无法调用类内变量def transform(cls, row):return json.dumps({"type": "chatml", "message":[{"role": "user", "content": cls.prompt+row['feature']},{"role": "assistant", "content": str(row['label'])}],"source": "self-made"}, ensure_ascii=False)class TrainsetBuilder:def __init__(self):self.trainset = Trainset()self.train_df = Noneself.test_df = Noneself.data_format_dict = {'bert': BertDataFormat,'qwen': QwenDataFormat}def set_data_path(self, raw_data_path):self.trainset.raw_data_path = raw_data_pathreturn selfdef set_feature(self, feature_column_list):self.trainset.feature_column_list = feature_column_listreturn selfdef set_label_strategy(self, label_strategy):self.trainset.label_strategy = label_strategyreturn selfdef set_trainset_ratio(self, ratio):self.trainset.trainset_ratio = ratioreturn selfdef set_data_format(self, data_format):self.trainset.data_format = data_formatreturn selfdef set_oversample(self, oversample=True):self.trainset.oversample = oversamplereturn selfdef balance_label(self):pos_df = self.train_df[self.train_df['label'].isin([1])]neg_df = self.train_df[self.train_df['label'].isin([0])]if len(neg_df) > 1.5 * len(pos_df):oversampel_ratio = int(len(neg_df)/len(pos_df))print(f"pos:{len(pos_df)}, neg:{len(neg_df)}, oversampel_ratio:{oversampel_ratio}")pos_df = pd.concat([pos_df] * oversampel_ratio, ignore_index=True)elif len(pos_df) > 1.5 * len(neg_df):oversampel_ratio = int(len(pos_df) / len(neg_df))print(f"pos:{len(pos_df)}, neg:{len(neg_df)}, oversampel_ratio:{oversampel_ratio}")neg_df = pd.concat([neg_df] * oversampel_ratio, ignore_index=True)train_df = pd.concat([pos_df, neg_df])self.train_df = train_df.sample(frac=1, random_state=87).reset_index(drop=True)def build(self):data_df = pd.read_csv(self.trainset.raw_data_path, encoding="gbk")data_df['feature'] = data_df.apply(lambda row: ",".join([row[i] for i in self.trainset.feature_column_list]), axis=1)data_df['label'] = data_df.apply(lambda row: self.trainset.label_strategy.gen_label(row), axis=1)data_df = data_df[['feature', 'label']]data_df = data_df.sample(frac=1, random_state=42).reset_index(drop=True)self.train_df = data_df.head(int(len(data_df) * self.trainset.trainset_ratio))self.test_df = data_df.tail(len(data_df) - len(self.train_df))if self.trainset.oversample:self.balance_label()self.trainset.train_data = self.train_df.apply(lambda row: self.data_format_dict.get(self.trainset.data_format, BertDataFormat).transform(row), axis=1)print(type(self.trainset.train_data))print(self.trainset.train_data)self.trainset.test_data = self.test_df.apply(lambda row: self.data_format_dict.get(self.trainset.data_format, BertDataFormat).transform(row), axis=1)return self.trainsetif __name__ == "__main__":builder = TrainsetBuilder()trainset = (builder.set_data_path("./raw_data/outputresult.csv").set_feature(['新闻标题']).set_label_strategy(ImportantType4) #ImportantType1, ImportantType2, ImportantType3, ImportantType4.set_trainset_ratio(0.8).set_oversample(True).set_data_format('bert') #bert, qwen.build())print(trainset)output_dir = "./data/"trainset.save_train_data(output_dir + "bert_train.tsv")trainset.save_test_data(output_dir + "bert_test.tsv")
相关文章:
【设计模式】使用python 实践框架设计
单一职责原则(SRP):一个类应该只有一个职责,意味着该类只应该有一个引起变化的原因。这使得代码更易于维护和理解。 开放封闭原则(OCP):软件实体(类、模块、函数等)应该…...
Apache paimon-CDC
CDC集成 paimon支持五种方式通过模式转化数据提取到paimon表中。添加的列会实时同步到Paimon表中 MySQL同步表:将MySQL中的一张或多张表同步到一张Paimon表中。MySQL同步数据库:将MySQL的整个数据库同步到一个Paimon数据库中。API同步表:将您的自定义DataStream输入同步到一…...
如何分析算法的执行效率和资源消耗
分析算法的执行效率和资源消耗可以从以下几个方面入手: 一、时间复杂度分析 定义和概念 时间复杂度是衡量算法执行时间随输入规模增长的速度的指标。它通常用大 O 符号表示,表示算法执行时间与输入规模之间的关系。例如,一个算法的时间复杂度为 O(n),表示该算法的执行时间…...
提示工程(Prompt Engineering)指南(进阶篇)
在 Prompt Engineering 的进阶阶段,我们着重关注提示的结构化、复杂任务的分解、反馈循环以及模型的高级特性利用。随着生成式 AI 技术的快速发展,Prompt Engineering 已经从基础的单一指令优化转向了更具系统性的设计思维,并应用于多轮对话、…...
音视频入门基础:FLV专题(19)——FFmpeg源码中,解码Audio Tag的AudioTagHeader,并提取AUDIODATA的实现
一、引言 从《音视频入门基础:FLV专题(18)——Audio Tag简介》可以知道,未加密的情况下,FLV文件中的一个Audio Tag Tag header AudioTagHeader AUDIODATA。本文讲述FFmpeg源码中是怎样解码Audio Tag的AudioTagHead…...
前端零基础入门到上班:【Day3】从零开始构建网页骨架HTML
HTML 基础入门:从零开始构建网页骨架 目录 1. 什么是 HTML?HTML 的核心作用 2. HTML 基本结构2.1 DOCTYPE 声明2.2 <html> 标签2.3 <head> 标签2.4 <body> 标签 3. HTML 常用标签详解3.1 标题标签3.2 段落和文本标签3.3 链接标签3.4 图…...
字符脱敏工具类
1、字符脱敏工具类 import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils;/*** 数据脱敏工具类** date 2024/10/30 13:44*/Slf4j public class DataDesensitizationUtils {public static final String STAR_1 "*";public static final …...
【jvm】jvm对象都分配在堆上吗
目录 1. 说明2. 堆上分配3. 栈上分配(逃逸分析和标量替换)4. 方法区分配5. 直接内存(非堆内存) 1. 说明 1.JVM的对象并不总是分配在堆上。2.堆是JVM用于存储对象实例的主要内存区域,存在一些特殊情况,对象…...
@AutoWired和 @Resource原理深度分析!
嗨,你好呀,我是猿java Autowired和Resource是 Java程序员经常用来实现依赖注入的两个注解,这篇文章,我们将详细分析这两个注解的工作原理、使用示例和它们之间的对比。 依赖注入概述 依赖注入是一种常见的设计模式,…...
C++设计模式创建型模式———原型模式
文章目录 一、引言二、原型模式三、总结 一、引言 与工厂模式相同,原型模式(Prototype)也是创建型模式。原型模式通过一个对象(原型对象)克隆出多个一模一样的对象。实际上,该模式与其说是一种设计模式&am…...
重学SpringBoot3-Spring WebFlux之SSE服务器发送事件
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ Spring WebFlux之SSE服务器发送事件 1. 什么是 SSE?2. Spring Boot 3 响应式编程与 SSE为什么选择响应式编程实现 SSE? 3. 实现 SSE 的基本步骤3.…...
YOLO即插即用模块---AgentAttention
Agent Attention: On the Integration of Softmax and Linear Attention 论文地址:https://arxiv.org/pdf/2312.08874 问题: 普遍使用的 Softmax 注意力机制在视觉 Transformer 模型中计算复杂度过高,限制了其在各种场景中的应用。 方法&a…...
探索开源语音识别的未来:高效利用先进的自动语音识别技术20241030
🚀 探索开源语音识别的未来:高效利用自动语音识别技术 🌟 引言 在数字化时代,语音识别技术正在引领人机交互的新潮流,为各行业带来了颠覆性的改变。开源的自动语音识别(ASR)系统,如…...
学习路之TP6--workman安装
一、安装 首先通过 composer 安装 composer require topthink/think-worker 报错: 分析:最新版本需要TP8,或装低版本的 composer require topthink/think-worker:^3.*安装后, 增加目录 vendor\workerman vendor\topthink\think-w…...
.NET内网实战:通过白名单文件反序列化漏洞绕过UAC
01阅读须知 此文所节选自小报童《.NET 内网实战攻防》专栏,主要内容有.NET在各个内网渗透阶段与Windows系统交互的方式和技巧,对内网和后渗透感兴趣的朋友们可以订阅该电子报刊,解锁更多的报刊内容。 02基本介绍 03原理分析 在渗透测试和红…...
AI Agents - 自动化项目:计划、评估和分配
Agents: Role 角色Goal 目标Backstory 背景故事 Tasks: Description 描述Expected Output 期望输出Agent 代理 Automated Project: Planning, Estimation, and Allocation Initial Imports 1.本地文件helper.py # Add your utilities or helper functions to…...
Git的.gitignore文件
一、各语言对应的.gitignore模板文件 项目地址:https://github.com/github/gitignore 二、.gitignore文件不生效 .gitignore文件只是ignore没有被追踪的文件,已被追踪的文件,要先删除缓存文件。 # 单个文件 git rm --cached file/path/to…...
网站安全,WAF网站保护暴力破解
雷池的核心功能 通过过滤和监控 Web 应用与互联网之间的 HTTP 流量,功能包括: SQL 注入保护:防止恶意 SQL 代码的注入,保护网站数据安全。跨站脚本攻击 (XSS):阻止攻击者在用户浏览器中执行恶意脚本。暴力破解防护&a…...
深度学习:梯度下降算法简介
梯度下降算法简介 梯度下降算法 我们思考这样一个问题,现在需要用一条直线来回归拟合这三个点,直线的方程是 y w ^ x b y \hat{w}x b yw^xb,我们假设斜率 w ^ \hat{w} w^是已知的,现在想要找到一个最好的截距 b b b。 一条…...
SparkSQL整合Hive后,如何启动hiveserver2服务
当spark sql与hive整合后,我们就无法启动hiveserver2的服务了,每次都要先启动hive的元数据服务(nohup hive --service metastore)才能启动hive,之前的beeline命令也用不了,hiveserver2的无法启动,这也导致我…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
