当前位置: 首页 > news >正文

2024年11月8日day8

半加器和全加器的区别
  • 半加器:只能处理两个二进制位的相加,无法处理进位。
  • 全加器:不仅能处理两个二进制位的相加,还能处理来自低位的进位。

⑴ 完成满足754标准存储格式的浮点数((43940000)16的十进制数值)

步骤1:理解IEEE 754标准

IEEE 754标准是一种广泛使用的浮点数表示方法,它规定了浮点数的存储格式。一个32位的浮点数(单精度)由三部分组成:

  • 符号位(1位):0表示正数,1表示负数。
  • 指数部分(8位):采用偏移量127的二进制指数表示。
  • 尾数部分(23位):表示有效数字,隐含了一个前导的1。

步骤2:将十六进制数转换为二进制数

给定的十六进制数是43940000。

  • 4 = 0100
  • 3 = 0011
  • 9 = 1001
  • 4 = 0100
  • 0000 = 0000 0000 0000

组合起来得到:0100 0011 1001 0100 0000 0000 0000 0000

步骤3:解析二进制数

  • 符号位:0(正数)
  • 指数部分:0100 0011(67)
  • 尾数部分:1001 0100 0000 0000 0000 000(隐含前导1)

步骤4:计算十进制值

  • 指数值:67 - 127 = -60(因为偏移量是127)
  • 尾数值:1.10010100000000000000000(二进制)

将尾数值转换为十进制:

1 + (1/2) + (0/4) + (1/8) + (0/16) + (1/32) + (0/64) + (0/128) + (0/256) + ... = 1.625

因此,浮点数表示的十进制值为:

1.625×2−60

⑵ 将十进制数-30/8转换成754标准32位浮点数的二进制存储格式

步骤1:计算十进制数的值

-30/8 = -3.75

步骤2:确定符号位

因为数值是负数,所以符号位为1。

步骤3:计算二进制表示

-3.75的整数部分和小数部分分别转换为二进制:

  • 整数部分:-3 = -(1 + 1 + 1) = -(111)2 = ...1111(补码表示,需要取反加1)
  • 小数部分:0.75 = 0.5 + 0.25 = 1/2 + 1/4 = (0.11)2

组合起来得到:-3.75 = -(11.11)2 = ...100.11(补码表示)

取反加1得到补码:

111.11 -> 000.00(取反)-> 000.01(加1)-> ...111.11(补码,实际存储)

步骤4:规格化

将补码表示的二进制数规格化为1.xxx形式,并计算指数:

1.1111(隐含前导1)

指数:从原点到第一个非零位(向左移动了3位),所以指数为-3。

步骤5:计算偏移后的指数

偏移后的指数 = -3 + 127 = 124

步骤6:组合成IEEE 754格式

  • 符号位:1
  • 指数部分:124(二进制0111 1100)
  • 尾数部分:11110000000000000000000(规格化后的尾数,23位)

组合起来得到:1 01111100 11110000000000000000000

步骤7:转换为十六进制表示

1 01111100 11110000000000000000000 -> C1F80000(十六进制)

因此,-30/8的IEEE 754标准32位浮点数二进制存储格式为C1F80000(十六进制)。

相关文章:

2024年11月8日day8

半加器和全加器的区别 半加器:只能处理两个二进制位的相加,无法处理进位。全加器:不仅能处理两个二进制位的相加,还能处理来自低位的进位。 ⑴ 完成满足754标准存储格式的浮点数((43940000)16的十进制数值&#xff09…...

Debezium系列之:Debezium3版本增量快照和只读增量快照应用的变化

Debezium系列之:Debezium3版本增量快照和只读增量快照应用的变化 一、需求背景二、基于数据库信号表使用增量快照案例三、基于Kafka信号Topic使用增量快照案例四、只读增量快照案例五、增量快照技术总结增量快照相关知识请阅读博主下面系列文章: Debezium系列之:实现增量快照…...

Python正则表达式1 re.match惰性匹配详解案例

点个关注 re.match() re.match() 函数尝试从字符串的开头开始匹配一个模式,如果匹配成功,返回一个匹配成功的对象,否则返回None。大小写区分,内容匹配不到后面的,只能匹配一个,不能有空格(开头匹配&#…...

WPF(C#)学习日志10:Prism框架下按键绑定

在Prism框架下&#xff0c;提供了DelegateCommand类用于处理了UI的按键请求&#xff0c;XAML中可以直接采用 Command"{Binding **}" 来绑定这些方法。这个类是一个泛型的类生命时仅需要DelegateCommand<T>即可&#xff0c;同时在XAML中绑定CommandParameter&qu…...

WPF中的ResizeMode

在 WPF (Windows Presentation Foundation) 中&#xff0c;ResizeMode 属性用于指定窗口是否可以被用户调整大小&#xff0c;以及如何调整大小。ResizeMode 属性可以设置为以下几个值之一&#xff1a; NoResize&#xff1a;窗口不能被用户调整大小&#xff0c;但可以被程序代码…...

Unity3D UI 双击和长按

Unity3D 实现 UI 元素双击和长按功能。 UI 双击和长按 上一篇文章实现了拖拽接口&#xff0c;这篇文章来实现 UI 的双击和长按。 双击 创建脚本 UIDoubleClick.cs&#xff0c;创建一个 Image&#xff0c;并把脚本挂载到它身上。 在脚本中&#xff0c;继承 IPointerClickHa…...

LabVIEW扫描探针显微镜系统

开发了一套基于LabVIEW软件开发的扫描探针显微镜系统。该系统专为微观尺度材料的热性能测量而设计&#xff0c;特别适用于纳米材料如石墨烯、碳纳米管等的研究。系统通过LabVIEW编程实现高精度的表面形貌和热性能测量&#xff0c;广泛应用于科研和工业领域。 项目背景 随着纳…...

问题式教学法在生物教学中的应用探索

问题式教学法在生物教学中的应用探索 李新 山东省德州市平原县第五中学 山东 德州 253100 摘要&#xff1a;时代在发展教育事业也在不断进步&#xff0c;不断创新教学方法有利于提高教学质量。问题教学法能让教材知识点以问题的形式呈现在学生眼前&#xff0c;这对引导学生…...

C++ | Leetcode C++题解之第556题下一个更大元素III

题目&#xff1a; 题解&#xff1a; class Solution { public:int nextGreaterElement(int n) {int x n, cnt 1;for (; x > 10 && x / 10 % 10 > x % 10; x / 10) {cnt;}x / 10;if (x 0) {return -1;}int targetDigit x % 10;int x2 n, cnt2 0;for (; x2 …...

实现链式结构二叉树

目录 需要实现的操作 链式结构二叉树实现 结点的创建 前序遍历 中序遍历 后序遍历 计算结点个数 计算二叉树的叶子结点个数 计算二叉树第k层结点个数 计算二叉树的深度 查找值为x的结点 销毁 层序遍历 判断是否为完全二叉树 总结 需要实现的操作 //前序遍历 void …...

在vscode中如何利用git 查看某一个文件的提交记录

在 Visual Studio Code (VSCode) 中&#xff0c;你可以使用内置的 Git 集成来查看某个文件的提交历史。以下是具体步骤&#xff1a; 使用 VSCode 内置 Git 功能 打开项目&#xff1a; 打开你的项目文件夹&#xff0c;确保该项目已经是一个 Git 仓库&#xff08;即项目根目录下…...

【ShuQiHere】️`adb kill-server` 和 `adb start-server` 命令的作用

&#x1f4df;&#x1f527; 【ShuQiHere】️ &#x1f527;&#x1f4df; 在使用 scrcpy 或其他依赖于 ADB&#xff08;Android Debug Bridge&#xff09; 的工具时&#xff0c;您可能会遇到需要重启 ADB 服务器的情况。今天&#xff0c;我们将详细解释两个常用的 ADB 命令&a…...

植物明星大乱斗1

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 scene.hmenuScene.hgameScene.hmainscene.cppmenuScene.cppgameScene.cpp scene.h #pragma once #include <graphics.h>/* 场景菜单角色选择游戏 */ class Scene { public:virtual ~Scene() 0; public:virt…...

信息安全工程师(84)UNIX/Linux操作系统安全分析与防护

前言 UNIX/Linux操作系统&#xff0c;尤其是Linux&#xff0c;以其开放性、稳定性和安全性在服务器、桌面、嵌入式设备和超级计算机中占据重要地位。然而&#xff0c;没有任何操作系统可以百分之百地保证安全&#xff0c;UNIX/Linux也不例外。 一、UNIX/Linux操作系统安全分析 …...

全面解析 Python typing模块与静态类型注解:从基础到高级

在现代软件开发中&#xff0c;代码的可读性、维护性和可靠性至关重要。Python 作为一门动态类型语言&#xff0c;尽管灵活&#xff0c;但也可能带来一些类型上的困扰。Python 的 typing 模块和静态类型注解提供了一种在编写代码时明确类型信息的方法&#xff0c;从而提升代码质…...

Jekins篇(搭建/安装/配置)

目录 一、环境准备 1. Jenkins安装和持续集成环境配置 2. 服务器列表 3. 安装环境 Jekins 环境 4. JDK 环境 5. Maven环境 6. Git环境 方法一&#xff1a;yum安装 二、JenKins 安装 1. JenKins 访问 2. jenkins 初始化配置 三、Jenkins 配置 1. 镜像配置 四、Mave…...

【工具变量】排污权交易政策试点DID(2000-2023)

数据简介&#xff1a;在过去几十年间的“高增长、高能耗、高污染”的经济发展背景下&#xff0c;随着社会各界不断反应高经济增长背后付出的巨大环境代价&#xff0c;中国ZF将节能环保减排纳入长期规划治理中。在2007年&#xff0c;我国开始启动了二氧化硫&#xff08;SO2&…...

Proteus中数码管动态扫描显示不全(已解决)

文章目录 前言解决方法后记 前言 我是直接把以前写的 51 数码管程序复制过来的&#xff0c;当时看的郭天祥的视频&#xff0c;先送段选&#xff0c;消隐后送位选&#xff0c;最后来个 1ms 的延时。 代码在 Proteus 中数码管静态是可以的&#xff0c;动态显示出了问题——显示…...

证件照尺寸168宽240高,如何手机自拍更换蓝底

在提供学籍照片及一些社会化考试报名时&#xff0c;会要求我们提供尺寸为168*240像素的电子版证件照&#xff0c;本文将介绍如何使用“报名电子照助手”&#xff0c;借助手机拍照功能完成证件照的拍摄和背景更换&#xff0c;特别是如何将照片尺寸调整为168像素宽和240像素高&am…...

力扣.167 两数之和 II two-sum-ii

数组系列 力扣数据结构之数组-00-概览 力扣.53 最大子数组和 maximum-subarray 力扣.128 最长连续序列 longest-consecutive-sequence 力扣.1 两数之和 N 种解法 two-sum 力扣.167 两数之和 II two-sum-ii 力扣.170 两数之和 III two-sum-iii 力扣.653 两数之和 IV two-…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...

Linux入门课的思维导图

耗时两周&#xff0c;终于把慕课网上的Linux的基础入门课实操、总结完了&#xff01; 第一次以Blog的形式做学习记录&#xff0c;过程很有意思&#xff0c;但也很耗时。 课程时长5h&#xff0c;涉及到很多专有名词&#xff0c;要去逐个查找&#xff0c;以前接触过的概念因为时…...

Shell 解释器​​ bash 和 dash 区别

bash 和 dash 都是 Unix/Linux 系统中的 ​​Shell 解释器​​&#xff0c;但它们在功能、语法和性能上有显著区别。以下是它们的详细对比&#xff1a; ​​1. 基本区别​​ ​​特性​​​​bash (Bourne-Again SHell)​​​​dash (Debian Almquist SHell)​​​​来源​​G…...