当前位置: 首页 > news >正文

动态规划 —— dp 问题-买卖股票的最佳时机III

1. 买卖股票的最佳时机III

题目链接:

123. 买卖股票的最佳时机 III - 力扣(LeetCode)icon-default.png?t=O83Ahttps://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/description/

 


2. 题目解析 


3. 算法原理

状态表示:以某一个位置为结尾或者以某一个位置为起点

  

dp[i]表示:第i天结束之后,此时的最大利润 :两种情况:

   

1. f[i][j]表示:第i天结束之后,完成了j次交易,处于买入状态,此时的最大利润

  

2. g[i][j]表示:第i天结束之后,完成了j次交易,处于卖出状态,此时的最大利润

2. 状态转移方程

  

在第i-1天处于买入状态,看买入状态能不能到自己,看卖出状态能不能到买入状态,另一个状态也是如此,一共4种状态

  

买入状态到卖出状态到
买入状态什么都不干-prices[i](买股票)
卖出状态+prices[i](交易次数+1)什么都不干

1. f[i][j] = max(f[i-1][j] , g[i-1][j] - prices[i])

  

2. g[i][j] = max(g[i-1][j] , f[i-1][j-1] + prices[i]

  

3. 初始化 :把dp表填满不越界,让后面的填表可以顺利进行

  

因为是在第i-1天处于买入/卖出状态,所以当交易次数为0时,就相当于在第i天为-1,那么就会导致越界

 

所以我们可以修改一下第二个状态转移方程来判断一下,我们可以看到卖出状态到自己的情况是不会改变的,所以只用修改买入状态到卖出状态  :

  

                                                1. g[i][j] = g[i-1][j](此状态一定不会越界)

   

                                                2. if(j-1>=0)     g[i][j] = max(g[i][j] , f[i-1][j-1] + prices[i]

  

在查找f[i-1][j-1] + prices[i]状态的时候先判断一下 下标是否合法(if(j-1>=0)),然后再求max 

定义一个正无穷大/小的时候涉及到需要进行加减操作的时候,不要使用INT_MIN/MAX,因为如果INT_MIN减去一个数的话就会变成一个非常大的整数而导致溢出,所以我们最好用 +/- 0x3f3f3f3f 来表示最小值

   

  

本题初始化就是先将表里的所有值都初始化为-无穷大,再把f[0][0] = --prices[0],g[0][0] = 0 

4. 填表顺序 

    

本题的填表顺序是:从上往下填写每一行,每一行从左往右,两个表同时填

5. 返回值 :题目要求 + 状态表示    

    

因为是要最大利润,所以买入状态不用考虑  

本题的返回值是:g表里最后一行里面的最大值


4. 代码  

动态规划的固定四步骤:1.  创建一个dp表

                                        2. 在填表之前初始化

                                        3. 填表(填表方法:状态转移方程)

                                        4. 确定返回值

class Solution {
public:const int INF=0x3f3f3f3f;//将无穷大赋予给INFint maxProfit(vector<int>& prices) {int n = prices.size();//1.  创建dp表//3:交易次数的三列:0,1,2,再将所有的位置都变成负无穷大vector<vector<int>>f(n,vector<int>(3,-INF));auto g=f;//2. 在填表之前初始化f[0][0]=-prices[0];g[0][0]=0;//3. 填表(填表方法:状态转移方程)for(int i=1;i<n;i++){for(int j=0;j<3;j++)//j只有0,1,2三种状态{f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i]);g[i][j]=g[i-1][j];if(j>=1)g[i][j]=max(g[i][j],f[i-1][j-1]+prices[i]);}}//g表里最后一行里面的最大值int ret=0;for(int j=0;j<3;j++)ret=max(ret,g[n-1][j]);return ret;}
};


未完待续~

相关文章:

动态规划 —— dp 问题-买卖股票的最佳时机III

1. 买卖股票的最佳时机III 题目链接&#xff1a; 123. 买卖股票的最佳时机 III - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/description/ 2. 题目解析 3. 算法原理 状态表示&#xff1a;以某一个位置为结尾或者…...

“绽放艺术风采、激发强国力量” 海南省第十一届中小学生艺术展演活动圆满开展

2024年11月1日&#xff0c;由省教育厅主办、琼台师范学院承办的海南省第十一届中小学生艺术展演省级展演活动在海口正式拉开帷幕。来自全省各市县、省属学校等共计4000余名师生参加本届中小学生艺术展演现场展演活动。 本届展演活动以“绽放艺术风采、激发强国力量”为主题&…...

Linux之文件和目录类命令详解(2)

Linux之文件和目录类命令详解&#xff08;2&#xff09; 1、mv-移动文件或重命名2、find-查找文件和目录3、locate-快速查找文件4、du-显示目录或文件的磁盘使用情况5、df-显示文件系统的磁盘空间使用情况6、chmod-更改文件或目录的权限7、chown-更改文件或目录的拥有者8、tree…...

NVR管理平台EasyNVR多品牌NVR管理工具/设备摄像头开启ONVIF的方法

NVR小程序接入平台EasyNVR作为一款功能强大的安防视频监控平台&#xff0c;以其出色的兼容性和灵活性&#xff0c;在智慧校园、智慧工厂、智慧水利等多个场景中得到了广泛应用。本文将重点介绍如何为大华摄像头开启ONVIF协议&#xff0c;以便与EasyNVR进行无缝对接。 大华大部分…...

Pr 视频过渡:沉浸式视频

效果面板/视频过渡/沉浸式视频 Video Transitions/Immersive Video Adobe Premiere Pro 的视频过渡效果中&#xff0c;沉浸式视频 Immersive Video效果组主要用于 VR 视频剪辑之间的过渡。 自动 VR 属性 Auto VR Properties是所有 VR 视频过渡效果的通用选项。 默认勾选&#x…...

SwiftUI开发教程系列 - 第1章:简介与环境配置

1.1 SwiftUI简介 SwiftUI 是 Apple 于 2019 年推出的声明式用户界面框架&#xff0c;旨在简化 iOS、macOS、watchOS 和 tvOS 应用的 UI 开发。与 UIKit 的命令式编程方式不同&#xff0c;SwiftUI 提供了一种声明式语法&#xff0c;让开发者可以以更加直观、简洁的方式构建 UI。…...

gitlab ci/cd搭建及使用笔记

记录下使用gitlab的ci/cd的devops构建过程中&#xff0c;一些易忘点或者踩坑点&#xff1a; 官方文档中英文&#xff08;建议英文&#xff09; https://docs.gitlab.com/ee/ci/yaml/artifacts_reports.html https://gitlab.cn/docs/jh/ci/pipelines/schedules.html为什么创建了…...

Xcode 16 中 Swift Testing 的参数化(Parameterized)机制趣谈

概述 我们之前曾在 《用接地气的例子趣谈 WWDC 24 全新的 Swift Testing 入门》系列博文以及《WWDC24&#xff08;Xcode 16&#xff09;中全新的 Swift Testing 使用进阶》博文中较为系统地介绍了今年 WWDC 24 中全新的 Swift Testing 测试系统。 不过 Swift Testing 的本领远…...

Python自动化运维DevSecOps与安全自动化

Python自动化运维DevSecOps与安全自动化 目录 &#x1f6e1;️ DevSecOps概念与实践&#x1f50d; 自动化安全扫描与漏洞修复&#x1f9f0; 基于Python的安全审计与合规性检查&#x1f433; 云平台与容器安全&#xff1a;基于Python的容器扫描工具⚠️ 自定义安全检测与漏洞修…...

2024下半年系统架构师考试【回忆版】

2024年11月10日&#xff0c;系统架构师考试如期举行&#xff0c;屡战屡败的参试倒是把北京的学校转了好几所。 本次考试时间 考试科目考试时间综合知识、案例分析8:30 - 12:30论文14:30 - 16:30 综合知识 1、1-1000以内包含5的数字个数 2、 案例分析 1、RESTful 对于前后…...

UE5.4 PCG 自定义PCG蓝图节点

ExecuteWithContext&#xff1a; PointLoopBody&#xff1a; 效果&#xff1a;点密度值与缩放成正比...

迁移学习相关基础

迁移学习 目标 将某个领域或任务上学习到的知识或模式应用到不同但相关的领域或问题中。 主要思想 从相关领域中迁移标注数据或者知识结构、完成或改进目标领域或任务的学习效果。 概述 Target data&#xff1a;和你的任务有直接关系的数据&#xff0c;但数据量少&#xff…...

华为云计算HCIE-Cloud Computing V3.0试验考试北京考场经验分享

北京试验考场 北京考场位置 1.试验考场地址 北京市海淀区北清路156号中关村环保科技示范园区M地块Q21楼 考试场选择北京&#xff0c;就是上面这个地址&#xff0c;在预约考试的时候会显示地址&#xff0c;另外在临近考试的时候也会给你发邮件&#xff0c;邮件内会提示你考试…...

数据分析——学习框架

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据

19年创业做过一年的量化交易但没有成功&#xff0c;作为交易系统的开发人员积累了一些经验&#xff0c;最近想重新研究交易系统&#xff0c;一边整理一边写出来一些思考供大家参考&#xff0c;也希望跟做量化的朋友有更多的交流和合作。 接下来聊聊基于Okex交易所API获取行情数…...

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述 深度神经网络DNN来自人脑神经元工作的原理&#xff0c;通过在计算机中逻辑抽象出多个节点&#xff0c;接收处理并向后传递信息&#xff0c;实现计算机的自我学习&#xff0c;类比结构见下图&#xff1a; 该方法通过预测输出与实际值的差异不断调整节点参数&#xff0…...

芯片测试-LDO测试

LDO测试 &#x1f4a2;LDO的简介&#x1f4a2;&#x1f4a2;压降&#x1f4a2;&#x1f4a2;决定压降的主要因素&#x1f4a2; &#x1f4a2;LDO的分类及原理&#x1f4a2;&#x1f4a2;PMOS LDO&#x1f4a2;&#x1f4a2;PMOS LDO工作过程&#x1f4a2;&#x1f4a2;PMOS LDO…...

期权懂|期权新手看过来:看跌期权该如何交易?

期权小懂每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 期权新手看过来&#xff1a;看跌期权该如何交易&#xff1f; 一、可以直接购买看跌期权‌&#xff1a; &#xff08;1&#xff09;选择预期下跌的标的资产。 &#xff08;2&#…...

《深入浅出HTTPS​​​​​​​​》读书笔记(8):密码学Hash算法的分类

密码学Hash算法有很多&#xff0c;比如MD5算法、SHA族类算法&#xff0c;MD5早已被证明是不安全的Hash算法了&#xff0c;目前使用最广泛的Hash算法是SHA族类算法。 1&#xff09;MD5 MD5是一种比较常用的Hash算法&#xff0c;摘要值长度固定是128比特。 MD5算法目前被证明已…...

大语言模型安全,到底是什么的安全

什么是AI安全 自ChatGPT问世以来&#xff0c;市场上涌现出了众多大型语言模型和多样化的AI应用。这些应用和模型在为我们的生活带来便利的同时&#xff0c;也不可避免地面临着安全挑战。AI安全&#xff0c;即人工智能安全&#xff0c;涉及在人工智能系统的开发、部署和使用全过…...

论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告

论文报告&#xff1a;基于卷积神经网络的手术机器人控制系统设计 摘要 本研究针对机器人辅助微创手术中定向障碍和缺乏导航信息的问题&#xff0c;设计了一种智能控制导航手术机器人系统。该系统采用可靠和安全的定位技术、7自由度机械臂以及避免关节角度限制的逆运动学控制策…...

试编写算法将单链表就地逆置(默认是带头节 点,如果是不带头节点地逆置呢?)

编写一个算法来就地逆置一个单链表。默认情况下&#xff0c;链表是带头节点的&#xff0c;但如果链表不带头节点&#xff0c;逆置的过程会有所不同。 第一步&#xff1a;定义逆置函数 根据题目中的“试编写算法将单链表就地逆置”&#xff0c;我们需要&#xff1a; 定义一个…...

FPGA学习笔记#3 Vitis HLS编程规范、数据类型、基本运算

本笔记根据笔者目前的项目确定学习目标&#xff0c;目前主要集中在Vitis HLS上&#xff0c;使用的Vitis HLS版本为2022.2&#xff0c;在windows11下运行&#xff0c;仿真part为xcku15p_CIV-ffva1156-2LV-e&#xff0c;从这一篇开始是HLS的学习进度&#xff0c;主要根据教程&…...

爬虫 - 二手交易电商平台数据采集 (一)

背景: 近期有一个需求需要采集某电商网站平台的商品数据进行分析。因此&#xff0c;我计划先用Python实现一个简单的版本&#xff0c;以快速测试技术的实现可能性&#xff0c;再用PHP实现一个更完整的版本。文章中涉及的技术仅为学习和测试用途&#xff0c;请勿用于商业或非法用…...

“成交量分布指标“,通过筹码精准锁定价格方向+简单找市场支撑压力位 MT4免费公式!

指标名称&#xff1a;成交量分布指标 版本&#xff1a;MT4 ver. 1.32 之前发布的市场分布图不少朋友反馈不错&#xff0c;希望获得其它版本。 这个版本只有MT4的&#xff0c;MT5可以看之前版本&#xff0c;链接&#xff1a; “市场分布图”&#xff0c;精准把握价格动向 更直…...

简记Vue3(四)—— 路由

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…...

Python批量合并多个PDF

在日常工作中&#xff0c;处理和合并多个 PDF 文件是一个常见需求&#xff0c;尤其是在需要将大量文件整理成一个完整文档时。本文将详细介绍如何使用 Python 的 PyMuPDF 库来实现批量 PDF 文件合并&#xff0c;并提供针对大文件优化的解决方案。 安装 PyMuPDF 要使用 PyMuPD…...

Linux:vim命令总结及环境配置

文章目录 前言一、vim的基本概念二、vim模式命令解析1. 命令模式1&#xff09;命令模式到其他模式的转换&#xff1a;2&#xff09;光标定位&#xff1a;3&#xff09;其他命令&#xff1a; 2. 插入模式3. 底行模式4. 替换模式5. 视图模式6. 外部命令 三、vim环境的配置1. 环境…...

贪心算法day05(k次取反后最大数组和 田径赛马)

目录 1.k次取反后最大化的数组和 2.按身高排序 3.优势洗牌 1.k次取反后最大化的数组和 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 代码&#xff1a; class Solution {public int largestSumAfterKNegations(int[] nums, int k) {//如…...

默认 iOS 设置使已锁定的 iPhone 容易受到攻击

苹果威胁研究的八个要点 苹果手机间谍软件问题日益严重 了解 Apple 苹果的设备和服务器基础模型发布 尽管人们普遍认为锁定的 iPhone 是安全的&#xff0c;但 iOS 中的默认设置可能会让用户面临严重的隐私和安全风险。 安全研究员 Lambros 通过Pen Test Partners透露&#…...

免费发布推广的平台有哪些/百度seo排名工具

基于Paddle的智慧交通预测系统 项目总结 随着深度学习在近几年的快速发展&#xff0c;智慧交通出现许多不同方面应用&#xff0c;如车牌识别、交通标志检测与识别及综合应用的行人分析系统等。 本项目分为三部分&#xff0c;分别是交通流量预测、车牌识别、车辆检测等&#x…...

企业建站系统漏洞/企业培训课程名称大全

大学生程序设计邀请赛(华东师范大学网络赛)题解ultmaster edited 4 年前首先声明本人不是所有题目的命题人&#xff0c;本人只是代表命题组发题解。好的我们开始。A. 魔法拼音这题确实没说清楚。比赛中也有很多人问这个怎么样&#xff0c;那个怎么样。但是很多问题问得不符合常…...

wordpress 多产品主图/连云港百度推广总代理

使用 MySQL自带命令 mysqldumpslow 查看 OPTIONS -s ORDER ORDER, 主要有 c, t, l, r 和 ac, at, al, ar, 分别是按照 query次数, 时间, lock的时间和返回的记录数来排序, 前面加了a时倒序.-t NUM top NUM, 即为返回前面多少条的数据.-g PATTERN grep: 后边可以写一个正则匹配模…...

南京尚网网络科技有限公司/福建企业seo推广

题目要求1登录账号&#xff1a;要求由6到12位字母、数字、下划线组成&#xff0c;只有字母可以开头&#xff1b;(1分)2登录密码&#xff1a;要求显示“• ”或“*”表示输入位数&#xff0c;密码要求八位以上字母、数字组成。(1分)3性别&#xff1a;要求用单选框或下拉框实现&a…...

模板网站建设公司/全媒体广告投放平台

Python的强大在于它拥有数量众多的第三方库协助开发&#xff0c;在编写Python项目时&#xff0c;我们经常会使用很多第三方模块。由于不同设备和系统的差异性&#xff0c;导致我们很难分散地控制项目依赖&#xff08;头铁的同学请绕道&#xff09;&#xff0c;于是requirements…...

工作室做网站流程/软文是什么样子的

消息通信的基本方式有两种&#xff1a; 1、同步方式 两个通信应用服务之间必须要进行同步&#xff0c;两个服务之间必须都是正常运行的。发送程序和接收程序都必须一直处于运行状态&#xff0c;并且随时做好相互通信的准备。 发送程序首先向接收程序发起一个请求&#xff0c;称…...