当前位置: 首页 > news >正文

【复平面】-复数相乘的几何性质



首先说结论

在复平面中,两个复数(即向量)相乘时,满足模长相乘,角度相加的性质。

从数学上证明

假设两个复数 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 表示为:

z 1 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) z1=r1(cosθ1+isinθ1)
z 2 = r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_2 = r_2 (\cos \theta_2 + i \sin \theta_2) z2=r2(cosθ2+isinθ2)

其中:

  • ( r 1 = ∣ z 1 ∣ r_1 = |z_1| r1=z1 ) 和 ( r 2 = ∣ z 2 ∣ r_2 = |z_2| r2=z2 ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的模长,
  • ( θ 1 \theta_1 θ1 ) 和 ( θ 2 \theta_2 θ2 ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的辐角(即相对于实轴的角度)。

1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1z2

我们将 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 相乘,得到:

z 1 ⋅ z 2 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) ⋅ r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_1 \cdot z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) \cdot r_2 (\cos \theta_2 + i \sin \theta_2) z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)

使用分配律展开:

z 1 ⋅ z 2 = r 1 r 2 [ ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) + i ( cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 ) ] z_1 \cdot z_2 = r_1 r_2 \left[ (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) \right] z1z2=r1r2[(cosθ1cosθ2sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]

2. 应用三角恒等式

根据加法公式的三角恒等式,有:

cos ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2

sin ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 \sin(\theta_1 + \theta_2) = \cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2 sin(θ1+θ2)=cosθ1sinθ2+sinθ1cosθ2

将这些恒等式代入到上面的表达式中,我们得到:

z 1 ⋅ z 2 = r 1 r 2 ( cos ⁡ ( θ 1 + θ 2 ) + i sin ⁡ ( θ 1 + θ 2 ) ) z_1 \cdot z_2 = r_1 r_2 \left( \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right) z1z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))

3. 得出结果

根据复数的极坐标形式,这个结果可以写成:

z 1 ⋅ z 2 = r 1 r 2 ⋅ e i ( θ 1 + θ 2 ) z_1 \cdot z_2 = r_1 r_2 \cdot e^{i (\theta_1 + \theta_2)} z1z2=r1r2ei(θ1+θ2)
因此,我们得出结论:两个复数相乘时,其模长是各自模长的乘积,辐角是各自辐角的和,即满足“模长相乘,角度相加”的性质。

从几何角度证明

本质上就是坐标轴的变换

1.给出待乘的复数 u i u_i ui

{ u = a + b i u i = − b + a i \left\{\begin{array}{l} u=a+b i \\ u i=-b+a i \end{array}\right. {u=a+biui=b+ai

( a , b ) ⋅ ( − b , a ) = 0 (a,b)\cdot(-b,a)=0 (a,b)(b,a)=0由于内积为0,故u与ui正交

2.给出任意复数 l l l

所以 ∀ l = x + y i \forall l=x+y_{i} l=x+yi与u相乘可以在新的坐标轴u、ui下表示,其与坐标轴角度与在原先坐标轴下相同。
所以两个复数(即向量)相乘时,满足角度相加的性质。
{ ∀ l = x + y i l ⋅ u = ( x + y i ) ⋅ u = x u + y u i \left\{\begin{array}{l} \forall l=x+y_{i} \\ l \cdot u=\left(x+y_{i}\right) \cdot u=x u+y u i \end{array}\right. {l=x+yilu=(x+yi)u=xu+yui

3.复数 l l l 在不同坐标轴下的表示图

Image 1Image 2

相关文章:

【复平面】-复数相乘的几何性质

文章目录 从数学上证明1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1​⋅z2​2. 应用三角恒等式3. 得出结果 从几何角度证明1.给出待乘的复数 u i u_i ui​2.给出任意复数 l l l3.复数 l l l 在不同坐标轴下的表示图 首先说结论: 在复平面中,两个复数&a…...

为什么ta【给脸不要脸】:利他是一种选择,善良者的自我救赎与智慧策略

你满腔热忱,他却视而不见; 你伸出援手,他却恩将仇报; 你谦让包容,他却得寸进尺; 你善意提拔,他却并不领情,反而“给脸不要脸”。 所有人都曾被这种“好心当成驴肝肺”遭遇内耗&a…...

mysql 配置文件 my.cnf 增加 lower_case_table_names = 1 服务启动不了的原因

原因:在MySQL8.0之后的版本,只允许在数据库初始化时指定,之后不允许修改了 mysql 配置文件 my.cnf 增加 lower_case_table_names 1 服务启动不了 报错信息:Job for mysqld.service failed because the control process exited …...

SIwave:释放 SIwizard 求解器的强大功能

SIwave 是一种电源完整性和信号完整性工具。SIwizard 是 SIwave 中 SI 分析的主要工具,也是本博客的主题。 SIwizard 用于研究 RF、clock 和 control traces 的信号完整性。该工具允许用户进行瞬态分析、眼图分析和 BER 计算。用户可以将 IBIS 和 IBIS-AMI 模型添加…...

强化学习不愧“顶会收割机”!2大创新思路带你上大分,毕业不用愁!

强化学习之父Richard Sutton悄悄搞了个大的,提出了一个简单思路:奖励聚中。这思路简单效果却不简单,等于是给几乎所有的强化学习算法上了一个增强buff,所以这篇论文已经入选了首届强化学习会议(RLC 2024)&a…...

mac 修改启动图图标数量

调整每行显示图标数量: defaults write com.apple.dock springboard-rows -int 7 调整每列显示的数量 defaults write com.apple.dock springboard-columns -int 8 最后重置一下启动台 defaults write com.apple.dock ResetLaunchPad -bool TRUE;killall Dock 其…...

网站架构知识之Ansible进阶(day022)

1.handler触发器 应用场景:一般用于分发配置文件时候,如果配置文件有变化,则重启服务,如果没有变化,则不重启服务 案列01:分发nfs配置文件,若文件发生改变则重启服务 2.when判断 用于给ans运…...

VMware调整窗口为可以缩小但不改变显示内容的大小

也就是缩小窗口不会影响内容的大小 这样设置就好...

Vue 3 中,ref 和 reactive的区别

在 Vue 3 中,ref 和 reactive 是两种用于创建响应式数据的方法。它们有一些关键的区别和适用场景。以下是它们的主要区别: ref 用途: ref 主要用于处理基本数据类型(如字符串、数字、布尔值等)以及需要单独响应的复杂…...

window 利用Putty免密登录远程服务器

1 在本地电脑用putty-gen生成密钥 参考1 参考2 2 服务器端操作 将公钥上传至Linux服务器。 复制上述公钥到服务器端的authorized_keys文件 mkdir ~/.ssh vi ~/.ssh/authorized_keys在vi编辑器中,按下ShiftInsert键或者右键选择粘贴,即可将剪贴板中的文…...

OGNL表达式

介绍 OGNL生来就是为了简化Java属性的取值,比如想根据名称name引用当前上下文环境中的对象,则直接键入即可,如果想要引用当前上下文环境中对象text的属性title,则键入text.title即可。如果想引用对象的非值属性,OGNL也…...

AI 大模型重塑软件开发流程的现状与未来展望

![在这里插## 标题入图片描述](https://i-blog.csdnimg.cn/direct/cf41e32d3b3649ce9a543afd4d31abba.gif#pic_center)​ 大家好,我是程序员小羊! 前言: 随着AI技术,尤其是大模型的快速发展,软件开发领域正在经历深刻…...

Spring Boot 的核心注解

一、引言 Spring Boot 作为一种流行的 Java 开发框架,以其简洁高效的开发方式受到广泛关注。其中,核心注解在 Spring Boot 应用的开发中起着至关重要的作用。理解这些注解的含义和用法,对于充分发挥 Spring Boot 的优势至关重要。本文将深入剖…...

蓝桥杯备考——算法

一、排序 冒泡排序、选择排序、插入排序、 快速排序、归并排序、桶排序 二、枚举 三、二分查找与二分答案 四、搜索(DFS) DFS(DFS基础、回溯、剪枝、记忆化) 1.DFS算法(深度优先搜索算法) 深度优先搜…...

MutationObserver与IntersectionObserver的区别

今天主要是分享一下MutationObserver和IntersectionObserver的区别,希望对大家有帮助! MutationObserver 和 IntersectionObserver 的区别 MutationObserver 作用:用于监听 DOM 树的变动,包括:元素的属性、子元素列表或节点文本的…...

生产与配置

1.鲁滨孙克苏鲁经济 鲁滨孙克苏鲁经济是一种非常简单的自给自足的经济,劳动时间与休息时间总和为总的时间。 即 摘椰子的数量为劳动时间的函数 由于鲁滨孙喜欢椰子,厌恶劳动时间,因此无差异曲线表现为厌恶品的形态。 根据无差异曲线和生…...

Android Kotlin Flow 冷流 热流

在 Android 开发中,Flow 是 Kotlin 协程库的一部分,用于处理异步数据流的一个组件。本质上,Flow 是一个能够异步生产多个值的数据流,与 suspend 函数返回单个值的模式相对应。Flow 更类似于 RxJava 中的 Observable,但…...

订单日记助力“实峰科技”提升业务效率

感谢北京实峰科技有限公司选择使用订单日记! 北京实峰科技有限公司,成立于2022年,位于北京市石景区,是一家以从事生产、销售微特电机、输配电及控制设备等业务为主的企业。 在业务不断壮大的过程中,想使用一种既能提…...

如何安装和配置JDK17

教程目录 零、引言1、新特性概览2、性能优化3、安全性增强4、其他改进5、总结 一、下载安装二、环境配置三、测试验证 零、引言 JDK 17(Java Development Kit 17)是Java平台的一个重要版本,它带来了许多新特性和改进,进一步提升了…...

智能化温室大棚控制系统设计(论文+源码)

1 系统的功能及方案设计 本次智能化温室大棚控制系统的设计其系统整体结构如图2.1所示,整个系统在器件上包括了主控制器STC89C52,温湿度传感器DHT11,LCD1602液晶,继电器,CO2传感器,光敏电阻,按…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...