深入探索:Scrapy深度爬取策略与实践
标题:深入探索:Scrapy深度爬取策略与实践
引言
在数据驱动的时代,深度爬取成为了获取丰富信息的重要手段。Scrapy,作为一个强大的Python爬虫框架,提供了多种工具和设置来帮助我们实现深度爬取。本文将详细介绍如何在Scrapy中设置并发请求的数量,并提供实际的代码示例,以指导如何进行深度爬取。
1. 理解深度爬取
深度爬取指的是从一个或多个起始页面开始,递归地抓取链接到的页面,以获取更深层次的数据。在Scrapy中,这通常涉及到管理多个请求和响应,以及处理页面间的链接。
2. 设置并发请求
Scrapy中有几个重要的设置项可以帮助我们控制并发请求的数量,以达到优化爬取效率的目的。
a. CONCURRENT_REQUESTS
这是控制Scrapy同时处理的最大并发请求数的设置项。默认值是16,但可以根据需要进行调整。
# settings.py
CONCURRENT_REQUESTS = 32
这将设置Scrapy同时处理的最大并发请求数为32。
b. CONCURRENT_REQUESTS_PER_DOMAIN
和 CONCURRENT_REQUESTS_PER_IP
这两个设置项分别控制每个域名和每个IP的最大并发请求数。默认值通常为8和0(不限制)。
# settings.py
CONCURRENT_REQUESTS_PER_DOMAIN = 8
CONCURRENT_REQUESTS_PER_IP = 8
这些设置有助于避免对单一资源的过度请求,减少被封禁的风险。
3. 实现深度爬取的策略
a. 递归爬取
递归爬取是深度爬取中常用的策略。以下是一个简单的Scrapy爬虫示例,它从一个起始页面开始,递归地抓取所有链接到的页面。
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Ruleclass DepthCrawlSpider(CrawlSpider):name = 'depth_crawl'allowed_domains = ['example.com']start_urls = ['http://example.com/start']rules = (Rule(LinkExtractor(), callback='parse_page', follow=True),)def parse_page(self, response):# 提取数据的逻辑pass
在这个示例中,LinkExtractor
用于提取页面中的所有链接,并且follow=True
参数确保了链接被跟踪并递归爬取。
b. 管理请求深度
有时,我们可能需要限制爬取的深度。可以通过在Request
对象中使用meta
参数来传递额外的信息,例如请求的深度。
def parse_page(self, response):depth = response.meta.get('depth', 0)if depth < 3: # 限制最大深度为3for link in get_links(response):yield scrapy.Request(url=link, callback=self.parse_page, meta={'depth': depth+1})# 提取数据的逻辑
这段代码展示了如何使用meta
参数来控制请求的深度。
4. 处理中间数据
在深度爬取中,中间数据的处理非常重要。Scrapy的Item Pipeline可以用来清洗和存储中间数据。
class MyPipeline(object):def process_item(self, item, spider):# 处理和存储数据的逻辑return item
在settings.py
中启用这个Pipeline:
ITEM_PIPELINES = {'myproject.pipelines.MyPipeline': 300,
}
5. 结论
通过合理配置Scrapy的并发请求和使用递归爬取策略,我们可以有效地进行深度爬取。同时,管理请求深度和处理中间数据是确保爬取效率和数据质量的关键。希望本文提供的信息能帮助你在Scrapy项目中实现更有效的深度爬取。
相关文章:
深入探索:Scrapy深度爬取策略与实践
标题:深入探索:Scrapy深度爬取策略与实践 引言 在数据驱动的时代,深度爬取成为了获取丰富信息的重要手段。Scrapy,作为一个强大的Python爬虫框架,提供了多种工具和设置来帮助我们实现深度爬取。本文将详细介绍如何在…...
《生成式 AI》课程 第3講:訓練不了人工智慧嗎?你可以訓練你自己
资料来自李宏毅老师《生成式 AI》课程,如有侵权请通知下线 Introduction to Generative AI 2024 Spring 摘要 这一系列的作业是为 2024 年春季的《生成式 AI》课程设计的,共包含十个作业。每个作业都对应一个具体的主题,例如真假难辨的世界…...
如何编译 Cesium 源码
如何编译 Cesium 源码 Cesium 是一个开源的 JavaScript 库,用于构建 3D 地球和地图应用程序。它提供了一套强大的 API 和工具,使开发者能够创建丰富的地理空间应用。本文将指导您如何从 GitHub 下载 Cesium 源码,并在本地进行编译。 TilesB…...
前端开发设计模式——责任链模式
目录 一、定义和特点 1. 定义 2. 特点 二、实现方式 定义抽象处理者(Handler)类 创建具体处理者(ConcreteHandler)类 构建责任链 以下是一个用 JavaScript 实现的示例: 三、应用场景 1. 表单验证 2. 请求处…...
JavaWeb--MySQL
1. MySQL概述 首先来了解一下什么是数据库。 数据库:英文为 DataBase,简称DB,它是存储和管理数据的仓库。 像我们日常访问的电商网站京东,企业内部的管理系统OA、ERP、CRM这类的系统,以及大家每天都会刷的头条、抖音…...
Python | Leetcode Python题解之第564题数组嵌套
题目: 题解: class Solution:def arrayNesting(self, nums: List[int]) -> int:ans, n 0, len(nums)for i in range(n):cnt 0while nums[i] < n:num nums[i]nums[i] ni numcnt 1ans max(ans, cnt)return ans...
Spring Boot教程之Spring Boot简介
Spring Boot 简介 接下来一段时间,我会持续发布并完成Spring Boot教程 Spring 被广泛用于创建可扩展的应用程序。对于 Web 应用程序,Spring 提供了 Spring MVC,它是 Spring 的一个广泛使用的模块,用于创建可扩展的 Web 应用程序。…...
Qwen2-VL:发票数据提取、视频聊天和使用 PDF 的多模态 RAG 的实践指南
概述 随着人工智能技术的迅猛发展,多模态模型在各类应用场景中展现出强大的潜力和广泛的适用性。Qwen2-VL 作为最新一代的多模态大模型,融合了视觉与语言处理能力,旨在提升复杂任务的执行效率和准确性。本指南聚焦于 Qwen2-VL 在三个关键领域…...
【安全科普】NUMA防火墙诞生记
一、我为啥姓“NUMA” 随着网络流量和数据包处理需求的指数增长,曾经的我面对“高性能、高吞吐、低延迟”的要求,逐渐变得心有余而力不足。 多CPU技术应运而生,SMP(对称多处理)和NUMA(非一致性内存访问&a…...
机器学习day2-特征工程
四.特征工程 1.概念 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 将任意数据(文本或图像等)转换为数字特征,对特征进行相关的处理 步骤:1.特征提取;2.无量纲化(预处理…...
Python数据分析NumPy和pandas(三十五、时间序列数据基础)
时间序列数据是许多不同领域的结构化数据的重要形式,例如金融、经济、生态学、神经科学和物理学。在许多时间点重复记录的任何内容都会形成一个时间序列。许多时间序列是固定频率的,也就是说,数据点根据某些规则定期出现,例如每 1…...
Python 小高考篇(6)常见错误及排查
目录 TypeError拼接字符串和数字错误示范正确示范 数字、字符串当成函数错误示范 给函数传入未被定义过的参数错误示范 传入的参数个数不正确错误示范 字符串相乘错误示范正确示范 量取整数的长度错误示范正确示范 格式化字符串时占位符个数不正确错误示范 给复数比较大小错误示…...
k8s上部署redis高可用集群
介绍: Redis Cluster通过分片(sharding)来实现数据的分布式存储,每个master节点都负责一部分数据槽(slot)。 当一个master节点出现故障时,Redis Cluster能够自动将故障节点的数据槽转移到其他健…...
C++的类和对象
在C中,类(class)和对象(object)是面向对象编程(OOP)的核心概念。以下是它们的详细介绍: 1. 类(Class) 定义: 类是用来定义一个新的数据类型&…...
自动驾驶系列—深入解析自动驾驶车联网技术及其应用场景
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...
机器学习(1)
一、机器学习 机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法ÿ…...
深入理解 Redis跳跃表 Skip List 原理|图解查询、插入
1. 简介 跳跃表 ( skip list ) 是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 在 Redis 中,跳跃表是有序集合键的底层实现之一,那么这篇文章我们就来讲讲跳跃表的实现原理。 2. …...
Halcon HImage 与 Qt QImage 的相互转换(修订版)
很久以前,我写过一遍文章来介绍 HImage 和 QImage 之间的转换方法。(https://blog.csdn.net/liyuanbhu/article/details/91356988) 这个代码其实是有些问题的。因为我们知道 QImage 中的图像数据不一定是连续的,尤其是图像的宽度…...
【Golang】——Gin 框架中的模板渲染详解
Gin 框架支持动态网页开发,能够通过模板渲染结合数据生成动态页面。在这篇文章中,我们将一步步学习如何在 Gin 框架中配置模板、渲染动态数据,并结合静态资源文件创建一个功能完整的动态网站。 文章目录 1. 什么是模板渲染?1.1 概…...
CSS:导航栏三角箭头
用CSS实现导航流程图的样式。可根据自己的需求进行修改,代码精略的写了一下。 注:场景一和场景二在分辨率比较低的情况下会有一个1px的缝隙不太优雅,自行处理。有个方法是直接在每个外面包一个DIV,用动态样式设置底色。 场景一、…...
onlyoffice Command service(命令服务)使用示例
一、说明 文档在这里:https://api.onlyoffice.com/docs/docs-api/additional-api/command-service/ 命令服务提供有几个简单的接口封装。也提供了前端和后端同时操作文档的可能。 二、正文 命令服务地址:https://documentserver/coauthoring/Com…...
QSS 设置bug
问题描述: 在QWidget上add 一个QLabel,但是死活不生效 原因: c 主程序如下: QWidget* LOGO new QWidget(logo_wnd);LOGO->setFixedSize(logo_width, 41);LOGO->setObjectName("TittltLogo");QVBoxLayout* tit…...
交换排序——快速排序
交换排序——快速排序 7.7 交换排序——快速排序快速排序概念c语言的库函数qsort快速排序框架quickSort 7.7 交换排序——快速排序 快速排序概念 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法(下文简称快排),其基本思想为&a…...
nodejs入门(1):nodejs的前后端分离
一、引言 我关注nodejs还是从前几年做了的一个电力大数据展示系统开始的,当然,我肯定是很多年的计算机基础的,万变不离其宗。 现在web网站都流行所谓的前后端结构,不知不觉我也开始受到这个影响,以前都是前端直接操作…...
笔记|M芯片MAC (arm64) docker上使用 export / import / commit 构建amd64镜像
很简单的起因,我的东西最终需要跑在amd64上,但是因为mac的架构师arm64,所以直接构建好的代码是没办法跨平台运行的。直接在arm64上pull下来的docker镜像也都是arm64架构。 检查镜像架构: docker inspect 8135f475e221 | grep Arc…...
gorm框架
连接 需要下载mysql的驱动 go get gorm.io/driver/mysql go get gorm.io/gorm 约定 主键:GORM 使用一个名为ID 的字段作为每个模型的默认主键。表名:默认情况下,GORM 将结构体名称转换为 snake_case 并为表名加上复数形式。 例如…...
免费送源码:Java+Springboot+MySQL Springboot多租户博客网站的设计 计算机毕业设计原创定制
Springboot多租户博客网站的设计 摘 要 博客网站是当今网络的热点,博客技术的出现使得每个人可以零成本、零维护地创建自己的网络媒体,Blog站点所形成的网状结构促成了不同于以往社区的Blog文化,Blog技术缔造了“博客”文化。本文课题研究的“…...
【ASR技术】WhisperX安装使用
介绍 WhisperX 是一个开源的自动语音识别(ASR)项目,由 m-bain 开发。该项目基于 OpenAI 的 Whisper 模型,通过引入批量推理、强制音素对齐和语音活动检测等技术。提供快速自动语音识别(large-v2 为 70 倍实时…...
【计算机网络】协议定制
一、结构化数据传输流程 这里涉及协议定制、序列化/反序列化的知识 对于序列化和反序列化,有现成的解决方案:①json ②probuff ③xml 二、理解发送接收函数 我们调用的所有发送/接收函数,根本就不是把数据发送到网络中!本质都是…...
【SQL】mysql常用命令
为方便查询,特整理MySQL常用命令。 约定:$后为Shell环境命令,>后为MySQL命令。 1 常用命令 第一步,连接数据库。 $ mysql -u root -p # 进入MySQL bin目录后执行,回车后输入密码连接。# 常用参数&…...
动态网站建设常用技术不包括/广州seo诊断
本节书摘来自异步社区《Visual Studio程序员箴言》一书中的第2章,第3节,作者: 【美】Sara For,译者: 谢俊 , 更多章节内容可以访问云栖社区“异步社区”公众号查看。 2.3 书签 Visual Studio程序员箴言书签…...
自学网站建设基本流程/廊坊seo推广公司
Vlookup函数,可以算是一个数据专员必须要会使用的基本函数了,确实很好用。但是你可能会注意到,Excel一旦数据量过大,打开都费劲了,何况打开后,你还要输入公式计算,就更费劲了,此时你…...
国家企业官网查询系统/网站seo排名免费咨询
1、$ORACLE_BASE/admin/SID_NAME/pfile文件夹下的init文件中的SID;2、/etc/oratab中的最后一行第一个“:”前,如“oracl:/u01/app/oracle/product/11.2.0/dbhome_1:N”中的“oracl”;3、~/.bash_profile中的SID;三个的sid要保持一致。...
财务公司协会/百度热搜seo
1.光标有方块阴影怎么办? 解决方案:按Insert按钮//在Home左边哦 分析:编辑模式 2.vs2019打开之前项目 解决:其实打开项目里打开解决方案.sln文件就好啦 3.LNK1120和LNK2019 error 函数声明没实现//很有可能是实现的时候名字打…...
做搜狗pc网站优化/建立企业网站步骤
第一步在原有基础上引入依赖:org.jetbrains.kotlinkotlin-stdlib-jre8${kotlin.version}org.jetbrains.kotlinkotlin-reflect${kotlin.version}com.fasterxml.jackson.modulejackson-module-kotlin2.9.4.1版本号多去少补:trueUTF-8UTF-81.81.2.20构建方式修改:${project.basedi…...
网站建设7个基本流程/淘宝搜索指数
综述:文本分析在市场营销研究中的应用文本大数据分析在经济学和金融学中的应用:一个文献综述倒计时4天|Python&Stata数据分析课寒假工作坊大数据时代到来,网络数据正成为潜在宝藏,大量商业信息、社会信息以文本等非结构化、异…...