【支持向量机(SVM)】:相关概念及API使用
文章目录
- 1 SVM相关概念
- 1.1 SVM引入
- 1.1.1 SVM思想
- 1.1.2 SVM分类
- 1.1.3 线性可分、线性和非线性的区分
- 1.2 SVM概念
- 1.3 支持向量概念
- 1.4 软间隔和硬间隔
- 1.5 惩罚系数C
- 1.6 核函数
- 2 SVM API使用
- 2.1 LinearSVC API 说明
- 2.2 鸢尾花数据集案例
- 2.3 惩罚参数C的影响
1 SVM相关概念
1.1 SVM引入
1.1.1 SVM思想
看一个故事,故事是这样子的:
在很久以前的情人节,一位大侠要去救他的爱人,但魔鬼需要大侠先攻克他设置的防线,于是和他玩了一个游戏game。
魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”
于是大侠这样放,干的不错?
然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。
大侠苦思冥想似乎记得学过SVM技术,于是就采用SVM试试。
这里的 SVM就试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。
现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。
在SVM 工具箱中有另一个更加重要的 trick(招式) 。 魔鬼看到大侠已经学会了前面一个trick,于是魔鬼给了大侠一个新的挑战。
现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然又想起了放大招—SVM。像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠练就的轻功,大侠抓起一张纸,插到了两种球的中间。样本在二维空间线性不可分,二维空间总解决不掉,将样本映射到更高维的空间,需要采用核函数。
现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。
最后,魔鬼被折服了
再之后,无聊的大人们,把这些球叫做 「data」 ,把棍子叫做 「classifier」 , 最大间隙trick 叫做 「optimization」 , 拍桌子叫做 「kernelling」 , 那张纸叫做 「hyperplane」。
概念:
- 超平面:划分类别的边界
- 类别之间的间隔:样本到超平面的距离
- 支持向量:与超平面距离最近的向量(样本)
- 核函数:将样本映射到更高维空间的函数
1.1.2 SVM分类
支持向量机的基本模型是定义在特征空间上的间隔最大的线性分类器。它是一种二分类的模型,当采用了核技巧之后,支持向量机可以用于非线性分类。不同类型的支持向量机解决不同问题:
(1)线性可分支持向量机(硬间隔支持向量机):
当训练数据线性可分的时候,通过硬间隔最大化,学习得到一个线性可分支持向量机。在分类间隔中,没有划分错误的样本。
(2)线性支持向量机(软间隔支持向量机):
当训练数据近似线性可分时,通过软间隔最大化,学习一个线性支持向量机。在分类间隔中,允许一部分样本划分错误。
(3)非线性支持向量机:
当训练数据线性不可分的时候,通过使用核技巧以及软间隔最大化,学得一个非线性支持向量机。
1.1.3 线性可分、线性和非线性的区分
第一个图是线性可分,我们借助线性可分支持向量机完成分类。第二个图是不能完全线性可分,我们通过线性支持向量机解决。第三个图是完全线性不可分的,需要借助非线性支持向量机分类。
通过上述描述,我们抽象其中的蓝球和红球,并将两种颜色的球转化为二维平面上的点坐标,篮球映射为黑球,红球映射为白球。使用直线H1,H2和H3分类这两类颜色的球,图中的H1不能很好的区分黑球和白球,可以看到H2和H3都能很好的区分这两种颜色的球。
区分数据集:
-
H2和H3这样的直线一样可以区分两种颜色的球体有很多种条直线,虽然他们都能够很好的分类已经存在的黑球和白球,也就是我们之前讲到的训练集分类效果很好,训练误差为0。
-
但是不能保证这些超平面在未知的实例上运行效果会很好,和上面魔鬼和大侠的例子一样,当魔鬼放置更多的黑球或白球的时候,我们提到的这些平面还能很好的让这些未知的球得到很好的分类吗?
-
考虑泛化误差的影响。 根据在检验样本上的运行效果,分类器必须从这些分类超平面中选择一个来表示它的决策边界。
-
满足这个条件的很多,但是使得泛化误差最小的条件就是边际margin最大的情况。如左图的边际不及右边的边际margin大,我们选择右边的图作为边界最好的划分。因为 在有新的点出现的时候左边图的边际会错误分类一些点,而右侧就能很好的分类。
1.2 SVM概念
SVM全称是supported vector machine(支持向量机),即寻找到一个超平面使样本分成两类,并且间隔最大。
超平面最大间隔
SVM学习的目的在于找到具有最大边缘的超平面。
原因:因为最大边缘超平面可以使得我们的训练误差很小的情况下,当有新数据的到来时也能使得测试误差达到最小。
1.3 支持向量概念
所有坐落在边际两边的超平面上的点被称作” 支持向量 (support vectors)"。
如下图,这两个特殊点是支撑我们构建最大边缘超平面的。这些点所在的边缘超平面上的点,称为支持向量。下图中红色的点对右图中的红色的直线或平面有支撑作用,这些点是关键点。而其点对最优超平面都没有影响。
1.4 软间隔和硬间隔
- 硬间隔指的是让所有的样本都不在最大间隔之间,并位于正确的一边,这就是硬间隔。如果出现异常值、或者样本不能线性可分,此时硬间隔无法实现。
- 软间隔指的是我们容忍一部分样本在最大间隔之内,甚至在错误的一边。相对来说,软间隔可以应用在一些线性不可分的场景。
- 目标是尽可能在保持间隔宽阔和限制间隔违例之间找到良好的平衡。
- 通过惩罚系数C来控制这个平衡:C值越小,则间隔越宽,但是间隔违例也会越多。
1.5 惩罚系数C
在硬间隔的情况下,我们只考虑如何使得间隔达到最大。在软间隔的情况,我们即要考虑最大化间隔,也要考虑到那些限制间隔违例的样本带来的损失。
C越大说明, 违反限制间隔的样本点带来的损失就越大,就要减少这些样本的数量,所以间隔就要越小。
C越小说明, 违反限制间隔的样本点带来的损失就越小,可以适当增大间隔,以增加模型的泛化能力。
1.6 核函数
核函数将原始输入空间映射到新的特征空间,使得原本线性不可分的样本在核空间可分
2 SVM API使用
2.1 LinearSVC API 说明
class sklearn.svm.LinearSVC(C=1.0)
- C:惩罚系数,类似于线性回归中的正则化系数
LinearSVC API的使用方式:
from sklearn.svm import LinearSVC
mysvc = LinearSVC(C=30)
mysvc.fit(X_standard, y)
print(mysvc.score(X_standard, y))
2.2 鸢尾花数据集案例
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
from plot_util import plot_decision_boundary# 1.加载数据
X,y=load_iris(return_X_y=True)# print(y.shape)
# print(X.shape)# 选择前0和1类的前两个特征
x = X[y<2,:2 ]
# 选择 0和1类
y = y[y<2]
# print(y.shape)# 绘制原数据图像分布
plt.scatter(x[y==0,0],x[y==0,1],c='red')
plt.scatter(x[y==1,0],x[y==1,1],c='blue')
plt.show()# 2.数据的预处理
# 进行数据标准化
transform = StandardScaler()
x_tran=transform.fit_transform(x)# 3.模型训练
# 设置惩罚系数
model=LinearSVC(C=10)
model.fit(x_tran,y)
y_pred = model.predict(x_tran)print(accuracy_score(y_pred,y))# 4.可视化
plot_decision_boundary(model,axis=[-3,3,-3,3])
plt.scatter(x_tran[y==0,0],x_tran[y==0,1],c='red')
plt.scatter(x_tran[y==1,0],x_tran[y==1,1],c='blue')
plt.show()
鸢尾花数据展示
LinearSVC分类边界
2.3 惩罚参数C的影响
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
from plot_util import plot_decision_boundary,plot_decision_boundary_svc# 1.加载数据
X,y=load_iris(return_X_y=True)# print(y.shape)
# print(X.shape)
x = X[y<2,:2]
y = y[y<2]
# print(y.shape)plt.scatter(x[y==0,0],x[y==0,1],c='red')
plt.scatter(x[y==1,0],x[y==1,1],c='blue')
plt.show()# 2.数据的预处理
transform = StandardScaler()
x_tran=transform.fit_transform(x)# 3.模型训练
model=LinearSVC(C=30)
model.fit(x_tran,y)
y_pred = model.predict(x_tran)print(accuracy_score(y_pred,y))# 4.可视化
plot_decision_boundary_svc(model,axis=[-3,3,-3,3])
plt.scatter(x_tran[y==0,0],x_tran[y==0,1],c='red')
plt.scatter(x_tran[y==1,0],x_tran[y==1,1],c='blue')
plt.show()# 3.模型训练
model=LinearSVC(C=0.01)
model.fit(x_tran,y)
y_pred = model.predict(x_tran)print(accuracy_score(y_pred,y))# 4.可视化
plot_decision_boundary_svc(model,axis=[-3,3,-3,3])
plt.scatter(x_tran[y==0,0],x_tran[y==0,1],c='red')
plt.scatter(x_tran[y==1,0],x_tran[y==1,1],c='blue')
plt.show()
C = 0.01
C = 10
相关文章:
【支持向量机(SVM)】:相关概念及API使用
文章目录 1 SVM相关概念1.1 SVM引入1.1.1 SVM思想1.1.2 SVM分类1.1.3 线性可分、线性和非线性的区分 1.2 SVM概念1.3 支持向量概念1.4 软间隔和硬间隔1.5 惩罚系数C1.6 核函数 2 SVM API使用2.1 LinearSVC API 说明2.2 鸢尾花数据集案例2.3 惩罚参数C的影响 1 SVM相关概念 1.1…...
Android kotlin之配置kapt编译器插件
配置项目目录下的gradle/libs.versions.toml文件,添加kapt配置项: 在模块目录下build.gradle.kt中增加 plugins {alias(libs.plugins.android.application)alias(libs.plugins.jetbrains.kotlin.android)// 增加该行alias(libs.plugins.jetbrains.kotl…...
时序数据库TDEngine
TDengine 是一款开源、高性能、云原生的时序数据库(Time Series Database, TSDB), 它专为物联网、车联网、工业互联网、金融、IT 运维等场景优化设计。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度&…...
jd-easyflow中inclusive的用法
在jd-easyflow中,inclusive通常与流程中的条件分支(conditions)配置相关,用于控制多个条件分支的执行逻辑。当conditionType设置为inclusive时,表示多个条件分支中的所有条件都会被评估,而不是像exclusive那…...
sqlmap图形化安装使用(附文件)
1.需要python环境,我这里就不教如何安装python环境了。 2.下载压缩包并且解压 3. 凭自己喜好选择大窗口小窗口 4.进入图形化界面后,1.输入url地址。2.选择要执行的操作。3.构造命令语句 5.点击一把梭,然后就可以发现出结果了 6. 对于喜欢自己…...
从二维到一维:动态规划矩阵问题的优化之道
动态规划中的矩阵问题是非常经典的应用场景,比如最小路径和问题。这类问题很自然地可以想到使用二维 dp 数组来求解。 我们定义: dp[i][j] 表示从矩阵的第 i行第 j列到右下角的最小路径和。 基本解法 求解过程从右下角开始,向左上角遍历&am…...
计算机视觉(CV):让机器看懂世界
引言 计算机视觉(Computer Vision, CV)是人工智能的重要领域,致力于让机器能够“看懂”世界。CV技术广泛应用于自动驾驶、医疗影像、安防监控和娱乐领域,正在改变我们的生活方式。 本文将从基本概念、技术方法、应用场景和发展方向…...
记录下,用油猴Tampermonkey监听所有请求,绕过seesion
油猴Tampermonkey监听所有请求,绕过seesion 前因后果脚本编写 前因后果 原因是要白嫖一个网站的接口,这个接口的页面入口被隐藏掉了,不能通过页面调用,幸好之前有想过逆向破解通过账号密码模拟登录后拿到token,请求该…...
服务器产品
一 存储产品 3.1 3PAR 3.2 X10000 3.3 SAN Switch 3.4 Nimble 3.5 SimpliVity 3.6 XP 3.7 MSA 3.8 StoreOnce 3.9 StoreEver 3.10 StoreBlade 3.11 StoreEasy(WindowsNAS) 3.12 JBOD 3.13 CB 二 服务器产品 4.1 红牌服务器 4.1.1 红牌…...
pyhton django web集群基于linux定时任务
基于django management/commands目录下的脚本 from django.core.management import BaseCommand import logging import uuid from pia.utils.cache import reset_redis_expire from pia.utils.reids_key import TASK_KEYlogging logging.getLogger(task)""" …...
探索 Python 字典的奥秘:Future 对象为何能成为字典的键?
本质在于作为字典的key能不能执行hash(key) 问题 import concurrent.futuresdef task(n):return n * n# 创建一个线程池 with concurrent.futures.ThreadPoolExecutor() as executor:# 提交任务并获取 Future 对象future_to_num {executor.submit(task, i): i for i in rang…...
多品牌摄像机视频平台EasyCVR视频融合平台+应急布控球:打造城市安全监控新体系
在当今快速发展的智慧城市和数字化转型浪潮中,视频监控技术已成为提升公共安全、优化城市管理、增强应急响应能力的重要工具。EasyCVR视频监控平台以其强大的多协议接入能力和多样化的视频流格式分发功能,为用户提供了一个全面、灵活、高效的视频监控解决…...
Spark 中 RDD checkpoint 是通过启动两个独立的 Job 完成的。
在 Spark 中,RDD checkpoint 是通过启动两个独立的 Job 完成的。这两个 Job 分别用于生成 checkpoint 数据和更新依赖关系。下面从源码角度深入分析这个机制。 1. 为什么需要两个 Job? 当调用 RDD.checkpoint() 后: 第一个 Job:…...
如何下载TikTok视频没有水印
随着短视频平台的普及,TikTok(抖音国际版)成为了全球最受欢迎的社交媒体平台之一。它吸引了无数创作者发布自己的短视频内容,内容涵盖了舞蹈、搞笑、挑战、教程、旅行等各个方面。与此用户也常常希望能够下载自己喜欢的TikTok视频…...
天童美语:提升孩子的自信心的方法
每个孩子都渴望展翅高飞,但在成长的旅途中,难免会遇到风雨。不自信,就像一层薄雾,有时悄悄笼罩在孩子心头,阻碍了他们向阳而生的脚步。宁波天童教育认为,身为家长,我们的使命不仅是孩子的庇护伞…...
【网络编程】字节序:大端序和小端序
端序(Endianness),又称字节顺序,又称尾序,在计算机科学领域中,指存储器中或在数字通信链路中,组成多字节的字的字节的排列顺序。 在几乎所有的机器上,多字节对象都被存储为连续的字…...
视频融合×室内定位×数字孪生
随着物联网技术的迅猛发展,室内定位与视频融合技术在各行各业中得到了广泛应用。不仅能够提供精确的位置信息,还能通过实时视频监控实现全方位数据的可视化。 与此同时,数字孪生等技术的兴起为智慧城市、智慧工厂等应用提供了强大支持&#…...
RK3568平台开发系列讲解(platform虚拟总线驱动篇)注册 platform 驱动
🚀返回专栏总目录 文章目录 一、注册 platform 驱动二、platform_driver 结构体沉淀、分享、成长,让自己和他人都能有所收获!😄 一、注册 platform 驱动 platform_driver_register 函数用于在 Linux 内核中注册一个平台驱动程序。 下面是对该函数的详细介绍: 函数原型…...
Jmeter进阶篇(26)杀掉Tomcat的几种方法
📚Jmeter性能测试大全:Jmeter性能测试大全系列教程❤,这里有你想要的一切,欢迎订阅哦~ 📚前言 Tomcat 是一个广泛使用的开源 Java Servlet 容器,用于部署和运行 Java Web 应用程序。在我们进行压测测试过程中,很可能遇到被测系统崩溃,需要我们来操作一下子Tomcat的情…...
Solana 区块链的技术解析及未来展望 #dapp开发#公链搭建
随着区块链技术的不断发展和应用场景的扩展,性能和可拓展性成为各大公链竞争的关键因素。Solana(SOL)因其高吞吐量、低延迟和低成本的技术特性,在众多区块链项目中脱颖而出,被誉为“以太坊杀手”之一。本文将从技术层面…...
SMO算法-核方法支持向量机
我们现在的问题是要优化目标函数,同时求出参数向量 α \alpha α P m i n ⏟ α 1 2 ∑ i 1 , j 1 m α i α j y i y j K ( x i , x j ) − ∑ i 1 m α i s . t . ∑ i 1 m α i y i 0 0 ≤ α i ≤ C P\underbrace{ min }_{\alpha} \frac{1}{2}\sum\li…...
Java项目实战II基于微信小程序的科创微应用平台(开发文档+数据库+源码)
目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着科技的…...
HTTP代理是什么,有什么用?
在互联网的世界里,数据采集已经成为许多企业和个人获取信息的重要手段。而在这个过程中,HTTP代理则是一个不可或缺的工具。那么,HTTP代理究竟是什么?它在数据采集中又有什么用呢?今天,我们就来深入探讨一下…...
Postman之newman
Postman之newman 1.基础环境node安装1.1.配置环境变量1.2.安装newman和html报告组件 2.newman运行 newman可以理解为,没有命令行的postman,把写好的测试脚本直接在命令行中运行,newman依赖于node环境,因此,需要先安装好…...
数据库查询表结构和数据量以及占用空间
数据库查询表结构和数据量以及占用空间 数据库查询表结构 mysql SELECT COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_LENGTH 长度, IS_NULLABLE 是否为空, COLUMN_DEFAULT 默认值, COLUMN_COMMENT 备注 FROM INFORMATION_SC…...
android 性能分析工具(03)Android Studio Profiler及常见性能图表解读
说明:主要解读Android Studio Profiler 和 常见性能图表。 Android Studio的Profiler工具是一套功能强大的性能分析工具集,它可以帮助开发者实时监控和分析应用的性能,包括CPU使用率、内存使用、网络活动和能耗等多个方面。以下是对Android …...
vscode 执行 vue 命令无效/禁止运行
在cmd使用命令可以创建vue项目但是在vscode上面使用命令却不行 一、问题描述 在 cmd 中已确认vue、node、npm命令可以识别运行,但是在 vscode 编辑器中 vue 命令被禁止,详细报错为:vue : 无法加载文件 D:\Software\nodejs\node_global\vue.…...
C++语言系列-STL容器和算法
C语言系列-STL容器 容器类 本文将对C语言中的标准模板库STL容器进行简单介绍,重点在于如何使用。 容器类 STL中的容器包括以下类别: vector: 动态数组,底层基于数组来实现,在容量不足的时候能够自动进行扩容。list: 链表stack: …...
【Web前端】Promise的使用
Promise是异步编程的核心概念之一。代表一个可能尚未完成的操作,并提供了一种机制来处理该操作最终的成功或失败。具体来说,Promise是由异步函数返回的对象,能够指示该操作当前所处的状态。 当Promise被创建时,它会处于“待定”&a…...
TDK推出第二代用于汽车安全应用的6轴IMU
近日,据外媒报道,TDK株式会社推出用于汽车安全应用的第二代6轴 IMU,即为TDK InvenSense SmartAutomotive MEMS传感器系列增加了IAM-20685HP和IAM-20689,为决策算法提供可靠的运动数据,并实时准确地检测车辆动态。这对于…...
北京做网站建设的公司/马鞍山seo
1 本机PySpark环境配置 2 PyCharm配置Python解释器 3 应用入口:SparkContext 4 WordCount代码实战 5 代码结果解析 6 从HDFS读取数据 7 提交代码到集群执行 8 总结 1 Python语言开发Spark程序步骤? 主要是获取SparkContext对象,基于SparkContext对象作为…...
杭州集团网站建设方案/企业策划推广公司
对于Java注解,我咨询过一些身边的人,很多人表示: 知道怎么用,不熟悉 不知道你是不是这样?在我没有系统性的学习一边注解的时候,我也是如此,在我花时间学习过注解之后,我觉得…...
石家庄政府网站建设/四川专业网络推广
摘要极端梯度提升 (eXtreme Gradient Boosting) 是一种基于决策树的集成机器学习方法,适用于分类和回归问题。其优点是速度快、效果好、能处理大规模数据、支持自定义损失函数等。极端梯度提升(XGBoost)XGBoost算法是运用提升法(boosting)建立多个CART回归树进行预测…...
市桥做网站/seo优化网络
尊敬的员工: 大家好! 为了确保公司快递的安全和及时送达,我们特此通知如下: 门卫将负责登记所有到件的快递,并确保快递的妥善存储。 员工需要凭身份证登记取件,请保证证件的有效性。 如果快递丢失ÿ…...
鞍山房产网/宁波seo在线优化
1. 软件测试不是点点点,还有性能测试,自动化测试,安全测试,甚至于AI测试,大数据测试等等,软件测试的前景还是非常好的。 按照软件测试的学习大纲,我总结了一份针对0基础的小白视频教程…...
南京网站设计制作套餐/自己创建网站
版权声明:转载请著名出处 http://blog.csdn.net/qq_23191031。作者: 大圣代 目录(?)[] 内存与内存分配策略概述 1 什么是内存 总结2 Android中的沙盒机制Generational Heap Memory内存模型的概述GC机制概述 1 Dalvik 和标准Java虚拟机的区别 11 Dalvik 和标准Java虚…...