深度学习:神经网络中的非线性激活的使用
深度学习:神经网络中的非线性激活的使用
在神经网络中,非线性激活函数是至关重要的组件,它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作(如权重相乘和偏置相加)解决的复杂数据模式,例如解决异或问题(XOR)和执行多类分类。
非线性激活函数的重要性
不包含非线性激活函数的神经网络,无论其层数有多深,其功能本质上仍然是线性的。这是因为多层线性变换只是一系列线性关系的组合,其总效果依然是线性的。非线性激活函数的引入打破了这种线性限制,使得网络能够通过每层的非线性变换学习复杂的任务和模式。
常用的非线性激活函数
ReLU (Rectified Linear Unit)
ReLU函数是目前最广泛使用的激活函数之一,尤其是在卷积神经网络(CNN)中。其数学表达式非常简单:
[ f(x) = \max(0, x) ]
优点:
- 计算效率高:ReLU的实现非常高效,因为它只需要对输入值进行阈值设置。
- 缓解梯度消失问题:在输入为正时,ReLU的导数恒为1,这有助于梯度在深层网络中的有效传播。
缺点:
- 神经元死亡问题:在训练过程中,一旦输入在激活前是负的,ReLU激活后输出为0,这些神经元在之后的训练过程中将不再更新,称为“死亡”。
Sigmoid
Sigmoid函数是另一种广泛使用的激活函数,尤其是在输出层用于二分类问题中,其输出可以视为概率值。其表达式为:
[ \sigma(x) = \frac{1}{1 + e^{-x}} ]
优点:
- 输出范围明确:输出值被挤压在0和1之间,适合表示概率。
缺点:
- 梯度消失:Sigmoid函数在输入值较大或较小时导数接近0,这会导致梯度消失问题,从而阻碍权重的有效更新。
- 输出非零中心化:Sigmoid函数输出恒正,导致其输出的平均值不为0,这可能影响后续层的学习。
PyTorch中ReLU和Sigmoid的应用示例
下面的示例展示了如何在PyTorch中使用ReLU和Sigmoid激活函数来处理数据:
import torch
import torch.nn as nn# 定义一个简单的神经网络模块,仅包含激活函数
class ActivationModule(nn.Module):def __init__(self):super(ActivationModule, self).__init__()# 初始化ReLU和Sigmoid激活函数self.relu = nn.ReLU()self.sigmoid = nn.Sigmoid()def forward(self, x):# 首先应用ReLU激活函数x = self.relu(x)# 然后应用Sigmoid激活函数x = self.sigmoid(x)return x# 创建模型实例
model = ActivationModule()# 创建一个输入张量
inputs = torch.tensor([[0.5, -0.6],[-1.0, 3.0],[1.5, -2.0]], dtype=torch.float32)# 通过模型传递输入
outputs = model(inputs)
print("Inputs:", inputs)
print("Outputs after ReLU and Sigmoid:", outputs)
详细的代码解释
模型定义 (ActivationModule
类):
- 该类继承自
nn.Module
,是所有PyTorch神经网络模块的基础。 - 在构造函数中,我们初始化了两个激活函数对象:
nn.ReLU()
和nn.Sigmoid()
。这允许模型在数据流经网络时先经过ReLU激活处理,然后通过Sigmoid函数进一步处理。
前向传播 (forward
方法):
- 输入数据
x
首先通过ReLU激活函数,该函数将所有负值转换为0,这有助于处理那些可能导致梯度消失或爆炸的负激活值。 - 经过ReLU处理后的数据接着通过Sigmoid激活函数。这一步将激活值转换成范围在0和1之间的输出,适用于表示概率,特别是在进行二分类任务时。
结论
非线性激活函数是神经网络设计中不可或缺的部分,它们赋予了网络处理非线性问题的能力。通过合适的激活函数可以根据具体问题的需求来优化网络的性能和效率。在实际应用中,应综合考虑激活函数的特性来选择最适合的类型。
相关文章:
深度学习:神经网络中的非线性激活的使用
深度学习:神经网络中的非线性激活的使用 在神经网络中,非线性激活函数是至关重要的组件,它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作(如权重相乘和偏…...
Python缓存:两个简单的方法
缓存是一种用于提高应用程序性能的技术,它通过临时存储程序获得的结果,以便在以后需要时重用它们。 在本文中,我们将学习Python中的不同缓存技术,包括functools模块中的 lru_cache和 cache装饰器。 简单示例:Python缓…...
原生微信小程序在顶部胶囊左侧水平设置自定义导航兼容各种手机模型
无论是在什么手机机型下,自定义的导航都和右侧的胶囊水平一条线上。如图下 以上图iphone12,13PRo 以上图是没有带黑色扇帘的机型 以下是调试器看的wxml的代码展示 注意:红色阔里的是自定义导航(或者其他的logo啊,返回之…...
经验笔记:远端仓库和本地仓库之间的连接(以Gitee为例)
经验笔记:远端仓库和本地仓库之间的连接 方法一:先创建远端仓库,再克隆到本地 创建远端仓库 登录到你的Git托管平台(如Gitee、GitHub、GitLab、Bitbucket等)。点击“New Repository”或类似按钮,创建一个新…...
利用RAGflow和LM Studio建立食品法规问答系统
前言 食品企业在管理标准、法规,特别是食品原料、特殊食品法规时,难以通过速查法规得到准确的结果。随着AI技术的发展,互联网上出现很多AI知识库的解决方案。 经过一轮测试,找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉…...
ffplay音频SDL播放处理
1、从解码数组获取到解码后的数据 static int audio_decode_frame(VideoState *is) {int data_size, resampled_data_size;av_unused double audio_clock0;int wanted_nb_samples;Frame *af;if (is->paused)return -1;//音频数组队列获取数据do { #if defined(_WIN32)while …...
自动化仪表故障排除法
自动化仪表主要是指在企业的实际生产工程当中,开展检测、控制、执行以及显示等一系列仪表的总称。合理地利用自动化仪表能够及时地掌握企业生产的动态,并获取相应的数据,从而推动生产过程的有序运行。 在自动化控制系统中,自动化…...
WPF 中 MultiConverter ——XAML中复杂传参方式
1. XAML代码 <!-- 数据库表格 --> <!-- RowHeaderWidth"0": 把默认的行表头隐藏 --> <DataGridx:Name"xDataGrid"Grid.Row"2"hc:DataGridAttach.ShowRowNumber"True"ItemsSource"{Binding WaferInfos, ModeT…...
实验室管理现代化:Spring Boot技术方案
4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式,是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示: 图4-1系统工作原理…...
aws凭证(一)凭证存储
AWS 凭证用于验证身份,并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后,才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢?有以下几个方法: 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置。AWS SDK 也会自动读取配置文件中的凭证。…...
jmeter常用配置元件介绍总结之断言
系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...
JMeter监听器与压测监控之Grafana
Grafana 是一个开源的度量分析和可视化套件,通常用于监控和观察系统和应用的性能。本文将指导你如何在 Kali Linux 上使用 Docker 来部署 Grafana 性能监控平台。 前提条件 Kali Linux:确保你已经安装了 Kali Linux。Docker:确保你的系统已…...
MySQL8 安装教程
一、从官网下载mysql-8.0.18-winx64.zip安装文件( 从 https://dev.mysql.com/downloads/file/?id484900 下载zip版本安装包 mysql-8.0.18-winx64.zip 解压到本地磁盘中,例如解压到:D盘根目录,并改名为MySQL mysql-8.0.34-winx6…...
聚焦 NLP 和生成式 AI 的创新与未来 基础前置知识点
给学生们讲解的技术内容可以根据他们的背景、兴趣和教学目标来规划。以下是一些适合不同阶段和领域的技术主题建议,尤其是与大语言模型(如 ChatGPT)相关的内容: 1. 自然语言处理(NLP)基础 适合对 NLP 了解…...
23种设计模式-访问者(Visitor)设计模式
文章目录 一.什么是访问者模式?二.访问者模式的结构三.访问者模式的应用场景四.访问者模式的优缺点五.访问者模式的C实现六.访问者模式的JAVA实现七.代码解释八.总结 类图: 访问者设计模式类图 一.什么是访问者模式? 访问者模式(…...
ssm150旅游网站的设计与实现+jsp(论文+源码)_kaic
毕 业 设 计(论 文) 题目:旅游网站设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本旅游网站就是在这样的大…...
【SKFramework框架】一、框架介绍
推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享QQ群:398291828小红书小破站 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 【Unity3D框架】SKFramework框架完全教程《全…...
Arcgis地图实战三:自定义导航功能的实现
文章目录 1.最终效果预览2.计算两点之间的距离3.将点线画到地图上4.动态展示点线的变化5.动态画线6.动态画点 1.最终效果预览 2.计算两点之间的距离 let dis this.utilsTools.returnDisByCoorTrans(qdXYData, zdXYData, "4549")当距离小于我们在配置文件中预设置的…...
LLaMA-Factory 上手即用教程
LLaMA-Factory 是一个高效的大型语言模型微调工具,支持多种模型和训练方法,包括预训练、监督微调、强化学习等,同时提供量化技术和实验监控,旨在提高训练速度和模型性能。 官方开源地址:https://github.com/hiyouga/L…...
黑马点评 秒杀下单出现的问题:服务器异常---java.lang.NullPointerException: null(已解决)
前言: 在此之前找了好多资料,查了很多,都没有找到对应解决的方法,虽然知道是userid为空,但不知道要修改哪里,还是自己的debug能力不足,以后得多加练习。。。 问题如下: 点击限时抢…...
购物街项目TabBar的封装
1.TabBar介绍 在购物街项目中 不论页面如何滚动 始终存在一个TabBar固定在该项目的底部 他在该项目中 扮演者选项卡栏的角色 内部存在若干选项 而选项中 固定存在两部分(图片文本) 其中主要涉及到TabBar/TabBarItem这些和业务无关的共享组件(建议存放于components/common中)、…...
C++游戏开发面试题及参考答案
目录 在游戏开发中,为什么选择 C++ 作为编程语言? 为什么 C++ 语言更适合游戏开发? 描述游戏中的碰撞检测的基本原理。 解释游戏中的碰撞检测机制,并用 C++ 举例说明如何实现。 描述游戏中的物理模拟的基本原理。 阐述游戏中的物理模拟,如重力模拟在 C++ 中的实现方…...
字符串的基本操作(C语言版)
一、实验内容: 采用顺序结构存储串,编写一个函数substring(strl,str2),用于判定str2是否为strl的子串;编写一个函数,实现在两个已知字符串中找出所有非空最长公共子串的长度和最长公共子串的个数; ①字符…...
C缺陷与陷阱 — 7 可移植性缺陷
目录 1 应对C语言标准变更 2 标识符的名称限制 3 整数的大小 4 字符是有符号整数还是无符号整数 5 移位运算符 6 内存位置0 7 除法运算时发生的截断 1 应对C语言标准变更 使用新特性可以使代码更容易编写且减少错误,但可能会导致代码在旧编译器上无法编译。…...
应急响应:玄机_Linux后门应急
https://xj.edisec.net/challenges/95 11关做出拿到万能密码,ATMB6666,后面都在root权限下操作 1、主机后门用户名称:提交格式如:flag{backdoor} cat /etc/passwd,发现后门用户 flag{backdoor} 2、主机排查项中可以…...
C++:捕获 shared_from_this()和捕获this的区别
两种方法的主要区别在于对象的生命周期管理以及捕获方式的不同。以下是对两种方法的详细对比: 第一种:捕获 shared_from_this() 的方法 event.subscribe([self shared_from_this()]() {std::cout << "Event triggered, object is alive.&qu…...
网络协议之TCP
一、定义 TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。TCP旨在适应支持多网络应用的分层协议层次结构。在因特网协议族(Internet p…...
《澳鹏AI全景报告2024》分析最新的数据挑战
华盛顿州柯克兰市,2024 年 10 月 22 日 —— Appen Limited(澳大利亚证券交易所代码:APX),一家为人工智能生命周期提供高质量数据的领先供应商,发布了其《2024 年人工智能现状报告》。该报告对美国多个行业…...
【Java每日面试题】—— String、StringBuilder和StringBuffer的区别?
1、String 不可变性:String对象创建后不可变,内容不能被修改,对字符串修改会产生一个新的字符串对象。 线程:线程安全 适用:字符串内容不发生变化或少量字符串操作 String str = "Hello"; str = str + " World"; 2、StringBuffer 不可变性:对…...
【设计模式】【创建型模式(Creational Patterns)】之单例模式
单例模式是一种常用的创建型设计模式,其目的是确保一个类只有一个实例,并提供一个全局访问点。 单例模式的原理 单例模式的核心在于控制类的实例化过程,通常通过以下方式实现: 私有化构造函数,防止外部直接实例化。…...
城乡建设学校官方网站/站外推广渠道
卓老师,我有一个信号与系统的问题想请教。按照时域采样定理,采样频率≥2倍的信号频率,才能得到信号全部信息。而以智能车中的编码器测速为例。我们知道测速周期在可接受范围内越小越利于控速,比如2ms。但2ms采样一次速度ÿ…...
网络规划设计师报考/广州seo外包
jangonginxuwsgi部署的站点访问某个URL时发生了400 bad request的错误,而使用django自带的开发版的web server时没有遇到此问题。初步判断是nginx或uwsgi配置问题。网上有说是因为request header过大而nginx配置的client_header_buffer_size和large_client_header_b…...
网站建设 技术 哪些内容/最新网站发布
各位考生:各学院拟录取名单已公示完毕。最后录取名单以教育部审核通过的为准。(公示时间:2017年3月31日-2017年4月14日)(公示时间:2017年4月1日-2017年4月17日)(公示时间:2017年4月1日-2017年4月17日)(公示时间:2017年…...
网站建设 工具/新闻播报最新
1:按指定大小,分隔集合,将集合按规定个数分为n个部分 /*** 将集合按len数量分成若干个list* param list* param len 每个集合的数量* return*/public static List<List<TotalorderDO>> splitList(List<TotalorderDO> list…...
自己怎么做免费网站空间/市场推广计划方案模板
前两天有时开机蓝屏,提示tcpip.sys文件怎么怎么样,我就把c:\windows\system32\drivers下面的tcpip.sys文件删除,从安装光盘的I386文件夹下提取新的文件到这个文件夹下,谁知今天来了,开机后:先是虚拟机的VMNET报错,然后我上Q,不行,打开OUTLOOK,不行,赶紧PING下服务器,不行,PING …...
wordpress手机端慢/torrent种子猫
我使用的是asp.net core 2.2.8,已安装aspnetcore-runtime-2.2.8-win-x64.exe与dotnet-runtime-2.2.8-win-x64.exe,相关设置已配置完毕。IIS服务安装启用正常。 网页搜索发现,是因为AspNetCoreModule这个组件未安装。 //2.2.x 下载地址 http…...