当前位置: 首页 > news >正文

深度学习:如何复现神经网络

深度学习:如何复现神经网络

在这里插入图片描述

要复现图中展示的卷积神经网络(CNN),我们需详细了解和配置每层网络的功能与设计理由。以下将具体解释各层的配置以及设计选择的原因,确保网络设计的合理性与有效性。

详细的网络层配置与设计理由

输入层
  • 规格: 3x32x32,代表处理的是32x32像素的彩色图像,有3个颜色通道(RGB)。这是标准的图像输入尺寸,适合大多数基于图像的深度学习应用,特别是在较小的数据集如CIFAR-10上。
第一卷积层
  • 卷积核大小: 5x5,可以捕捉到图片中的小特征(如边缘和角落)。
  • 输出通道: 32,这意味着网络将从输入图像中学习32种不同的特征表示。
  • 填充: 2,为了保持输出特征图的空间尺寸与输入相同,从而不丢失边缘信息。
  • 激活函数: ReLU,用于引入非线性,帮助网络学习复杂的模式。
  • 设计理由: 第一层通常设计为能捕捉基本特征的层,使用较大的卷积核来获取更广泛的输入区域信息,并增加输出通道以捕捉多样的特征。
第一最大池化层
  • 核大小和步长: 2x2,步长通常与核大小相同,用于降低特征图的空间尺寸,减少计算量,并帮助抵抗输入的小幅度位移。
  • 设计理由: 池化层跟在卷积层后面,用于压缩数据和参数的数量,并减小过拟合的风险。
第二卷积层
  • 参数与第一卷积层相同,保持32个通道,这样可以在不过度增加计算负担的前提下,进一步分析由第一层检测到的特征。
  • 设计理由: 重复使用相同配置的卷积层可以深化特征的层次,提高特征提取的效果。
第二最大池化层
  • 配置与第一池化层相同,继续降低特征图的空间维度,并增强模型的抽象能力。
  • 设计理由: 继续压缩数据,准备更深层次的特征提取。
第三卷积层
  • 输出通道: 64,增加输出通道数,可以捕捉更复杂的特征。
  • 设计理由: 在网络的更深层次增加更多的通道,以便网络可以学习更复杂、更抽象的特征表示。
第三最大池化层
  • 配置与前两个池化层相同,进一步降低特征图尺寸,简化网络输出之前的计算需求。
  • 设计理由: 最后一次池化减少最终特征的空间尺寸,为全连接层处理准备。
展平操作
  • 功能: 将多维的卷积或池化输出转换成一维数组,以便作为全连接层的输入。
  • 设计理由: 展平是从卷积层到全连接层的桥梁,它将二维特征图转换为一维特征向量。
全连接层
  • 第一层: 输入来自展平后的1024维向量(由64个4x4的特征图展平得到),输出到64个神经元,这一转换通过全连接层学习特征的全局模式。
  • 第二层: 将64维的输出映射到10个输出类别,对应于分类任务中的类别数。
  • 设计理由: 全连接层在网络末端,用于根据提取的特征执行分类任务。

结合PyTorch代码实现

import torch
import torch.nn as nn
import torch.nn.functional as Fclass CustomCNN(nn.Module):def __init__(self):super(CustomCNN, self).__init__()# 初始化模块,继承nn.Module# 第一层:卷积层# 输入通道3(RGB图像),输出通道32,卷积核大小5x5,填充2# 使用填充2是为了保持图像尺寸不变,便于堆叠多层卷积self.layer1 = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2),nn.ReLU(),  # ReLU激活函数增加非线性,有助于学习复杂模式nn.MaxPool2d(2, 2)  # 最大池化层,核大小2x2,步长2,用于降低特征图维度)# 第二层:卷积层# 保持相同的通道数32,卷积核大小5x5,填充2self.layer2 = nn.Sequential(nn.Conv2d(32, 32, 5, padding=2),nn.ReLU(),nn.MaxPool2d(2, 2))# 第三层:卷积层# 增加输出通道至64,以提高网络的学习能力self.layer3 = nn.Sequential(nn.Conv2d(32, 64, 5, padding=2),nn.ReLU(),nn.MaxPool2d(2, 2))# 全连接层# 展平后的数据大小为64*4*4,因为最后的特征图大小为4x4,通道数为64self.fc1 = nn.Linear(64 * 4 * 4, 64)  # 第一个全连接层,从1024维到64维self.fc2 = nn.Linear(64, 10)  # 第二个全连接层,从64维输出到10维,对应10个类别def forward(self, x):# 定义网络的前向传播路径x = self.layer1(x)  # 通过第一层卷积、ReLU和池化x = self.layer2(x)  # 通过第二层卷积、ReLU和池化x = self.layer3(x)  # 通过第三层卷积、ReLU和池化x = x.view(-1, 64 * 4 * 4)  # 展平操作,为全连接层准备x = F.relu(self.fc1(x))  # 通过第一个全连接层并应用ReLU激活函数x = self.fc2(x)  # 通过第二个全连接层得到最终的分类结果return x# 实例化模型并打印出模型结构
model = CustomCNN()
print(model)

模型结构说明

连接层得到最终的分类结果
return x

实例化模型并打印出模型结构

model = CustomCNN()
print(model)

### 模型结构说明此代码定义了一个典型的卷积神经网络,它通过多个卷积层和池化层逐步提取图像特征,然后通过全连接层进行分类。每个卷积层后都跟有ReLU激活函数以及最大池化操作,目的是增强网络的非线性处理能力和减少特征维度,从而抑制过拟合并提高泛化能力。最终通过全连接层输出预测结果,适用于多类分类任务。

相关文章:

深度学习:如何复现神经网络

深度学习:如何复现神经网络 要复现图中展示的卷积神经网络(CNN),我们需详细了解和配置每层网络的功能与设计理由。以下将具体解释各层的配置以及设计选择的原因,确保网络设计的合理性与有效性。 详细的网络层配置与设…...

Spring Boot与MyBatis-Plus的高效集成

Spring Boot与MyBatis-Plus的高效集成 引言 在现代 Java 开发中,MyBatis-Plus 作为 MyBatis 的增强工具,以其简化 CRUD 操作和无需编写 XML 映射文件的特点,受到了开发者的青睐。本篇文章将带你一步步整合 Spring Boot 与 MyBatis-Plus&…...

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门(一) 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作,只需要拖拽即可完成一个视觉效果…...

Spark RDD sortBy算子执行时进行数据 “采样”是什么意思?

一、sortBy 和 RangePartitioner sortBy 在 Spark 中会在执行排序时采用 rangePartitioner 进行分区,这会影响数据的分区方式,并且这一步骤是通过对数据进行 “采样” 来计算分区的范围。不过,重要的是,sortBy 本身仍然是一个 tr…...

React-useRef与DOM操作

#题引:我认为跟着官方文档学习不会走歪路 ref使用 组件重新渲染时,react组件函数里的代码会重新执行,返回新的JSX,当你希望组件“记住”某些信息,但又不想让这些信息触发新的渲染时,你可以使用ref&#x…...

Mistral AI 发布 Pixtral Large 模型:多模态时代的开源先锋

Mistral AI 最新推出的 Pixtral Large 模型,带来了更强的多模态能力。作为一款开源的多模态模型,它不仅在参数量上达到 1240 亿,更在文本和图像理解上实现了质的飞跃。 模型亮点 1. 多模态能力再升级 Pixtral Large 配备了 123B 参数的解码器…...

Windows、Linux多系统共享蓝牙设备

Windows、Linux多系统共享蓝牙设备 近来遇到一个新问题,就是双系统共享蓝牙鼠标。因为一直喜欢在Windows、Linux双系统之间来回切换,而每次切换系统蓝牙就必须重新配对,当然,通过网络成功解决了问题。 通过这个问题,稍…...

C语言 | Leetcode C语言题解之第564题寻找最近的回文数

题目&#xff1a; 题解&#xff1a; #define MAX_STR_LEN 32 typedef unsigned long long ULL;void reverseStr(char * str) {int n strlen(str);for (int l 0, r n-1; l < r; l, r--) {char c str[l];str[l] str[r];str[r] c;} }ULL * getCandidates(const char * n…...

wsl虚拟机中的dockers容器访问不了物理主机

1 首先保证wsl虚拟机能够访问宿主机IP地址&#xff0c;wsl虚拟机通过vEthernet (WSL)的地址访问&#xff0c;着意味着容器也要通过此IP地址访问物理主机。 2 遇到的问题&#xff1a;wsl虚拟机中安装了docker&#xff0c;用在用到docker容器内的开发环境&#xff0c;但是虚拟机…...

Spark RDD 的宽依赖和窄依赖

通俗地理解 Spark RDD 的 宽依赖 和 窄依赖&#xff0c;可以通过以下比喻和解释&#xff1a; 1. 日常生活比喻 假设你在管理多个团队完成工作任务&#xff1a; 窄依赖&#xff1a;每个团队只需要关注自己的分工&#xff0c;完成自己的任务。例如&#xff0c;一个人将纸张折好&…...

二进制转十进制

解题思路分析 二进制转十进制原理&#xff1a;二进制数转换为十进制数的基本原理是按位权展开相加。对于一个二进制数&#xff0c;从右往左每一位的位权依次是将每一位上的数字&#xff08;0 或 1&#xff09;乘以其对应的位权&#xff0c;然后把所有结果相加&#xff0c;就得…...

深度学习:神经网络中的非线性激活的使用

深度学习&#xff1a;神经网络中的非线性激活的使用 在神经网络中&#xff0c;非线性激活函数是至关重要的组件&#xff0c;它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作&#xff08;如权重相乘和偏…...

Python缓存:两个简单的方法

缓存是一种用于提高应用程序性能的技术&#xff0c;它通过临时存储程序获得的结果&#xff0c;以便在以后需要时重用它们。 在本文中&#xff0c;我们将学习Python中的不同缓存技术&#xff0c;包括functools模块中的 lru_cache和 cache装饰器。 简单示例&#xff1a;Python缓…...

原生微信小程序在顶部胶囊左侧水平设置自定义导航兼容各种手机模型

无论是在什么手机机型下&#xff0c;自定义的导航都和右侧的胶囊水平一条线上。如图下 以上图iphone12&#xff0c;13PRo 以上图是没有带黑色扇帘的机型 以下是调试器看的wxml的代码展示 注意&#xff1a;红色阔里的是自定义导航&#xff08;或者其他的logo啊&#xff0c;返回之…...

经验笔记:远端仓库和本地仓库之间的连接(以Gitee为例)

经验笔记&#xff1a;远端仓库和本地仓库之间的连接 方法一&#xff1a;先创建远端仓库&#xff0c;再克隆到本地 创建远端仓库 登录到你的Git托管平台&#xff08;如Gitee、GitHub、GitLab、Bitbucket等&#xff09;。点击“New Repository”或类似按钮&#xff0c;创建一个新…...

利用RAGflow和LM Studio建立食品法规问答系统

前言 食品企业在管理标准、法规&#xff0c;特别是食品原料、特殊食品法规时&#xff0c;难以通过速查法规得到准确的结果。随着AI技术的发展&#xff0c;互联网上出现很多AI知识库的解决方案。 经过一轮测试&#xff0c;找到问题抓手、打通业务底层逻辑、对齐行业颗粒度、沉…...

ffplay音频SDL播放处理

1、从解码数组获取到解码后的数据 static int audio_decode_frame(VideoState *is) {int data_size, resampled_data_size;av_unused double audio_clock0;int wanted_nb_samples;Frame *af;if (is->paused)return -1;//音频数组队列获取数据do { #if defined(_WIN32)while …...

自动化仪表故障排除法

自动化仪表主要是指在企业的实际生产工程当中&#xff0c;开展检测、控制、执行以及显示等一系列仪表的总称。合理地利用自动化仪表能够及时地掌握企业生产的动态&#xff0c;并获取相应的数据&#xff0c;从而推动生产过程的有序运行。 在自动化控制系统中&#xff0c;自动化…...

WPF 中 MultiConverter ——XAML中复杂传参方式

1. XAML代码 <!-- 数据库表格 --> <!-- RowHeaderWidth"0": 把默认的行表头隐藏 --> <DataGridx:Name"xDataGrid"Grid.Row"2"hc:DataGridAttach.ShowRowNumber"True"ItemsSource"{Binding WaferInfos, ModeT…...

实验室管理现代化:Spring Boot技术方案

4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式&#xff0c;是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示&#xff1a; 图4-1系统工作原理…...

aws凭证(一)凭证存储

AWS 凭证用于验证身份,并授权对 DynamoDB 等等 AWS 服务的访问。配置了aws凭证后,才可以通过编程方式或从AWS CLI连接访问AWS资源。凭证存储在哪里呢?有以下几个方法: 一、使用文件存储 1、介绍 文件存储适用于长期和多账户配置。AWS SDK 也会自动读取配置文件中的凭证。…...

jmeter常用配置元件介绍总结之断言

系列文章目录 1.windows、linux安装jmeter及设置中文显示 2.jmeter常用配置元件介绍总结之安装插件 3.jmeter常用配置元件介绍总结之线程组 4.jmeter常用配置元件介绍总结之函数助手 5.jmeter常用配置元件介绍总结之取样器 6.jmeter常用配置元件介绍总结之jsr223执行pytho…...

JMeter监听器与压测监控之Grafana

Grafana 是一个开源的度量分析和可视化套件&#xff0c;通常用于监控和观察系统和应用的性能。本文将指导你如何在 Kali Linux 上使用 Docker 来部署 Grafana 性能监控平台。 前提条件 Kali Linux&#xff1a;确保你已经安装了 Kali Linux。Docker&#xff1a;确保你的系统已…...

MySQL8 安装教程

一、从官网下载mysql-8.0.18-winx64.zip安装文件&#xff08; 从 https://dev.mysql.com/downloads/file/?id484900 下载zip版本安装包 mysql-8.0.18-winx64.zip 解压到本地磁盘中&#xff0c;例如解压到&#xff1a;D盘根目录&#xff0c;并改名为MySQL mysql-8.0.34-winx6…...

聚焦 NLP 和生成式 AI 的创新与未来 基础前置知识点

给学生们讲解的技术内容可以根据他们的背景、兴趣和教学目标来规划。以下是一些适合不同阶段和领域的技术主题建议&#xff0c;尤其是与大语言模型&#xff08;如 ChatGPT&#xff09;相关的内容&#xff1a; 1. 自然语言处理&#xff08;NLP&#xff09;基础 适合对 NLP 了解…...

23种设计模式-访问者(Visitor)设计模式

文章目录 一.什么是访问者模式&#xff1f;二.访问者模式的结构三.访问者模式的应用场景四.访问者模式的优缺点五.访问者模式的C实现六.访问者模式的JAVA实现七.代码解释八.总结 类图&#xff1a; 访问者设计模式类图 一.什么是访问者模式&#xff1f; 访问者模式&#xff08;…...

ssm150旅游网站的设计与实现+jsp(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;旅游网站设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本旅游网站就是在这样的大…...

【SKFramework框架】一、框架介绍

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享QQ群&#xff1a;398291828小红书小破站 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 【Unity3D框架】SKFramework框架完全教程《全…...

Arcgis地图实战三:自定义导航功能的实现

文章目录 1.最终效果预览2.计算两点之间的距离3.将点线画到地图上4.动态展示点线的变化5.动态画线6.动态画点 1.最终效果预览 2.计算两点之间的距离 let dis this.utilsTools.returnDisByCoorTrans(qdXYData, zdXYData, "4549")当距离小于我们在配置文件中预设置的…...

LLaMA-Factory 上手即用教程

LLaMA-Factory 是一个高效的大型语言模型微调工具&#xff0c;支持多种模型和训练方法&#xff0c;包括预训练、监督微调、强化学习等&#xff0c;同时提供量化技术和实验监控&#xff0c;旨在提高训练速度和模型性能。 官方开源地址&#xff1a;https://github.com/hiyouga/L…...

自己做物流网站/企业培训体系搭建

第1关:XPath 路径表达式 1.选取bookstore元素的所有子节点 ********** Begin *********bookstore ***...

做图素材网站哪个好/网页设计费用报价

MES选型不是做秀&#xff0c;不是选美。 如今不少企业在信息化推广应用过程中面面求好、追求完美&#xff0c;用意没错&#xff0c;然而在MES开发过程中&#xff0c;软件商不可能将今后各种可能出现的问题考虑周全&#xff0c;不可能将系统做到十全十美。随着系统投入使用的范围…...

校园网站建设意见/湖南靠谱seo优化

一、变量 1、变量三要素&#xff1a;类型名称数值 2、变量需要先申请后使用 3、变量是有作用域的&#xff08;在一个作用域中不能重名&#xff09; 4、变量表示内存中的一个存储区域 二、程序中 的使用 1、如果 前后没有字符串就表示运算符 2、 前有字符串的 &#xff0c; …...

天津公司网站制作公司/百度竞价推广有哪些优势

原因&#xff1a; CBCentralManager 实例是局部变量&#xff0c;初始化完成之后没有被当前创建它的类所持有 参考博客&#xff1a; [CoreBluetooth] XPC connection invalid...

视频添加到wordpress/自己想开个网站怎么弄

讲师简介晁岳攀&#xff08;鸟窝&#xff09;百度&#xff0c;资深工程师 多次GopherChina大会讲师&#xff0c;极客时间专栏作者&#xff0c;Go微服务框架 rpcx 作者。演讲内容演讲主题&#xff1a;《Go泛型的实现、陷阱和应用场景》主题摘要&#xff1a;Go泛型2022年2月份就要…...

如何自己做个简单网站/长沙今日头条新闻

K-means也是聚类算法中最简单的一种了&#xff0c;但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中&#xff0c;那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习&#xff0c;…...