当前位置: 首页 > news >正文

RFdiffusion EuclideanDiffuser类解读

EuclideanDiffuser 是 RFdiffusion 中的一个关键类,专门设计用于对**三维空间中的点(如蛋白质的原子坐标)**进行扩散处理。它通过逐步向这些点添加噪音来实现扩散过程,从而为扩散模型提供输入数据,并通过逆扩散还原这些数据。

get_beta_schedule函数源代码

def get_beta_schedule(T, b0, bT, schedule_type, schedule_params={}, inference=False):"""Given a noise schedule type, create the beta schedule"""assert schedule_type in ["linear"]# Adjust b0 and bT if T is not 200# This is a good approximation, with the beta correction below, unless T is very smallassert T >= 15, "With discrete time and T < 15, the schedule is badly approximated"b0 *= 200 / TbT *= 200 / T# linear noise scheduleif schedule_type == "linear":schedule = torch.linspace(b0, bT, T)else:raise NotImplementedError(f"Schedule of type {schedule_type} not implemented.")# get alphabar_t for conveniencealpha_schedule = 1 - schedulealphabar_t_schedule = torch.cumprod(alpha_schedule, dim=0)if inference:print(f"With this beta schedule ({schedule_type} schedule, beta_0 = {round(b0, 3)}, beta_T = {round(bT,3)}), alpha_bar_T = {alphabar_t_schedule[-1]}")return schedule, alpha_schedule, alphabar_t_schedule

函数功能

生成扩散过程中的 β、α 和 α‾调度,用于正向扩散和反向去噪过程。

参数说明:
  1. T: 总的时间步数,即扩散过程持续的步数。
  2. b0 和 bT:
    • 初始噪音强度 β0和最终噪音强度 βT​。
    • 用于确定噪音随时间的线性变化范围。
  3. schedule_type:
    • 扩散调度类型,目前仅支持 "linear"(线性调度)。
  4. schedule_params:
    • 附加参数(暂未使用,但可以扩展为支持其他调度类型)。
  5. inference:
    • 如果为 True,将输出调度的诊断信息,用于调试或检查。
代码解读
1. 调度类型验证
assert schedule_type in ["linear"]

目前只支持 "linear" 调度,否则抛出错误。

2. 时间步数和噪音范围调整
assert T >= 15, "With discrete time and T < 15, the schedule is badly approxim

相关文章:

RFdiffusion EuclideanDiffuser类解读

EuclideanDiffuser 是 RFdiffusion 中的一个关键类,专门设计用于对**三维空间中的点(如蛋白质的原子坐标)**进行扩散处理。它通过逐步向这些点添加噪音来实现扩散过程,从而为扩散模型提供输入数据,并通过逆扩散还原这些数据。 get_beta_schedule函数源代码 def get_beta…...

Flutter实现气泡提示框学习

前置知识点学习 GlobalKey GlobalKey 是 Flutter 中一个非常重要的概念&#xff0c;它用于唯一标识 widget 树中的特定 widget&#xff0c;并提供对该 widget 的访问。这在需要跨越 widget 树边界进行交互或在 widget 树重建时保持状态时尤其有用。 GlobalKey 的作用 唯一标…...

vue3 路由守卫

在Vue 3中&#xff0c;路由守卫是一种控制和管理路由跳转的机制。它允许你在执行导航前后进行一些逻辑处理&#xff0c;比如权限验证、数据预取等&#xff0c;从而增强应用的安全性和效率。路由守卫分为几种不同的类型&#xff0c;每种类型的守卫都有其特定的应用场景。 其实路…...

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.

操作环境&#xff1a; MATLAB 2022a 1、算法描述 北方苍鹰优化算法&#xff08;Northern Goshawk Optimization&#xff0c;简称NGO&#xff09;是一种新兴的智能优化算法&#xff0c;灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽&#xff0c;广泛分布于北…...

如何控制自己玩手机的时间?两台苹果手机帮助自律

对一些人来说&#xff0c;被智能手机“绑架”是一件心甘情愿的事&#xff0c;和它相处的一天中&#xff0c;不必面对现实的压力&#xff0c;它就像个“舒适区”。这是因为在使用手机的过程中&#xff0c;应用程序&#xff08;尤其是游戏和社交媒体应用&#xff09;会不断刺激大…...

【java-Neo4j 5开发入门篇】-最新Java开发Neo4j

系列文章目录 前言 上一篇文章讲解了Neo4j的基本使用&#xff0c;本篇文章对Java操作Neo4j进行入门级别的阐述&#xff0c;方便读者快速上手对Neo4j的开发。 一、开发环境与代码 1.docker 部署Neo4j #这里使用docker部署Neo4j,需要镜像加速的需要自行配置 docker run --name…...

Python的3D可视化库 - vedo (1)简介和模块功能概览

文章目录 1. vedo和它支持的功能简介1.1 安装vedo1.2 命令行接口1.3 导出3D文件1.4 文件格式转换 2. vedo模块功能概览2.1 绘制和渲染visual 管理可视化、对象及其属性的显示的基类plotter 3D渲染colors 定义和显示颜色dolfin FEniCS/Dolfin库的支持 2.2 图形数据管理mesh 多边…...

全面解析:HTML页面的加载全过程(一)--输入URL地址,与服务器建立连接

用户输入URL地址&#xff0c;与服务器建立连接 用户在浏览器地址栏输入一个URL 浏览器开始执行以下三步操作操作&#xff1a;url解析、DNS查询、TCP连接 第一步&#xff1a;URL解析 什么是URL&#xff1f; URL(Uniform Resource Locator&#xff0c;统一资源定位符)是互联网…...

elasticsearch的倒排索引是什么?

大家好&#xff0c;我是锋哥。今天分享关于【elasticsearch的倒排索引是什么&#xff1f;】面试题。希望对大家有帮助&#xff1b; elasticsearch的倒排索引是什么&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 倒排索引&#xff08;Inverted Index&a…...

Ubuntu VNC Session启动chromium和firefox报错

问题描述 VNC客户端连接到Ubuntu Server后&#xff0c;启动chromium和firefox时报错&#xff1a; $ chromium [348564:348564:1117/102143.085649:ERROR:ozone_platform_x11.cc(244)] Missing X server or $DISPLAY [348564:348564:1117/102143.085732:ERROR:env.cc(258)] Th…...

【Tealscale + Headscale + 自建服务器】异地组网笔记

文章目录 效果为什么要用 Headscale云服务器安装 Headscale配置 config.yaml创建反向代理搭建管理 UI授权管理 UI添加互联设备参考 效果 首先是连接情况&#xff0c;双端都连接上自建的 Headscale&#xff0c; 手机使用移动流量&#xff0c;测试一下 ping 值 再试试进入游戏 可…...

C++ 编程基础(8)模版 | 8.2、函数模版

文章目录 一、函数模版1、声明与定义2、模版参数3、模板的实例化3.1、隐式实例化3.2、显示实例化 4、模版的特化5、注意事项6、总结 前言&#xff1a; C 函数模板是一种强大的特性&#xff0c;它允许程序员编写与类型无关的代码。通过使用模板&#xff0c;函数或类可以处理不同…...

Android Studio音频视频播放器课程设计

这个项目适合刚刚学习Android studio的初学者&#xff0c;实现音视频的基本播放功能&#xff0c;各项功能的页面都做的比较简单&#xff0c;特别适用于初学者&#xff0c;其特点在于本项目抛开了各种花里胡哨的制作&#xff0c;以最接近初学者的样式画面呈现&#xff0c;完全不…...

速盾:CDN是否支持屏蔽IP?

CDN&#xff08;内容分发网络&#xff09;是一种用于提高网站性能和可靠性的技术&#xff0c;通过将内容分发到距离终端用户更近的节点&#xff0c;减少了数据传输的延迟并提高了用户体验。在CDN中&#xff0c;屏蔽IP是一项重要的功能&#xff0c;可以帮助网站屏蔽无效或恶意请…...

机器学习—学习曲线

学习曲线是帮助理解学习算法如何工作的一种方法&#xff0c;作为它所拥有的经验的函数。 绘制一个符合二阶模型的学习曲线&#xff0c;多项式或二次函数&#xff0c;画出交叉验证错误Jcv&#xff0c;以及Jtrain训练错误&#xff0c;所以在这个曲线中&#xff0c;横轴将是Mtrai…...

在 macOS 和 Linux 中,波浪号 `~`的区别

文章目录 1、在 macOS 和 Linux 中&#xff0c;波浪号 ~macOS示例 Linux示例 区别总结其他注意事项示例macOSLinux 结论 2、root 用户的主目录通常是 /root解释示例切换用户使用 su 命令使用 sudo 命令 验证当前用户总结 1、在 macOS 和 Linux 中&#xff0c;波浪号 ~ 在 macO…...

【Java】实战:多数元素

一、题目描述 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 示例 1&#xff1a; 输入&#xff1a;nums [3,2,3] 输出&#x…...

一文解决Latex中的eps报错eps-converted-to.pdf not found: using draft setting.

在使用Vscode配的PDFLatex编译IEEE TII的Latex模板时&#xff0c;出现eps文件不能转换为pdf错误&#xff0c;看了几十篇方法都没用&#xff0c;自己研究了半天终于可以正常运行了。主要原因还是Settings.JSON中的PDFLatex模块缺少&#xff1a;"--shell-escape", 命令…...

计算光纤色散带来的相位移动 matlab

需要注意的地方 1.以下内容纯属个人理解&#xff0c;很有可能不准确&#xff0c;请大家仅做参考 2.光速不要直接用3e8 m/s&#xff0c;需要用精确的2.9979.... 3.光的频率无论在真空还是光纤(介质)都是不变的&#xff0c;是固有属性&#xff0c;但是波长lambdac/f在不同的介…...

国内docker pull拉取镜像的解决方法

访问网站&#xff0c;查找该网站上可用的镜像源&#xff0c;然后替换掉下面代码中的hub-mirror.c.163.com&#xff1a; docker pull hub-mirror.c.163.com/library/nginx:latest 另外&#xff0c;进入到镜像之后&#xff0c;可以使用下面的命令查看操作系统版本。 lsb_releas…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...