当前位置: 首页 > news >正文

【机器学习】- L1L2 正则化操作

目录

0.引言

在机器学习中,正则化是一种通过约束模型参数控制模型复杂度的技术。它可以有效减少过拟合,提高模型的泛化能力。常见的正则化方法包括 L1 正则化L2 正则化


1.正则化的基本思想

在训练模型时,我们的目标是最小化损失函数。正则化通过在损失函数中加入一个正则化项,对模型参数施加约束,从而避免过于复杂的模型。

带有正则化的损失函数一般形式为:

损失函数 = 数据误差 + λ ⋅ 正则化项 \text{损失函数} = \text{数据误差} + \lambda \cdot \text{正则化项} 损失函数=数据误差+λ正则化项

其中:

  • 数据误差:如均方误差 (MSE) 或交叉熵损失。
  • 正则化项:对模型参数的约束,如 L 1 L1 L1 L 2 L2 L2
  • λ \lambda λ:正则化强度(超参数),控制正则化项的权重。

2.L1 正则化

  1. 定义
    L1 正则化的正则化项是模型参数的绝对值之和:

    R ( w ) = ∥ w ∥ 1 = ∑ i = 1 n ∣ w i ∣ R(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{i=1}^n |w_i| R(w)=w1=i=1nwi

    L1 正则化后的损失函数为:

    L = 数据误差 + λ ∑ i = 1 n ∣ w i ∣ L = \text{数据误差} + \lambda \sum_{i=1}^n |w_i| L=数据误差+λi=1nwi

  2. 特性

    • 通过惩罚参数的绝对值,鼓励某些参数变为零
    • 适合特征选择,因为它会自动剔除不重要的特征(参数为零)。
  3. 适用场景

    • 特征数量较多,且希望通过稀疏性来筛选重要特征(如高维数据)。

3.L2 正则化

  1. 定义
    L2 正则化的正则化项是模型参数的平方和:

    R ( w ) = ∥ w ∥ 2 2 = ∑ i = 1 n w i 2 R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2 = \sum_{i=1}^n w_i^2 R(w)=w22=i=1nwi2

    L2 正则化后的损失函数为:

    L = 数据误差 + λ ∑ i = 1 n w i 2 L = \text{数据误差} + \lambda \sum_{i=1}^n w_i^2 L=数据误差+λi=1nwi2

  2. 特性

    • 通过惩罚参数的平方值,鼓励模型参数较小但不为零。
    • 与 L1 不同,它不会让参数变为完全零,而是接近零。
  3. 适用场景

    • 当希望模型平滑,避免过度拟合时(如线性回归)。

4.L1 与 L2 正则化的比较

特性L1 正则化L2 正则化
正则化项 ∣ w ∣ 1 = ∑ w i |\boldsymbol{w}|_1 = \sum w_i w1=wi ∣ w ∣ 2 2 = ∑ w i 2 |\boldsymbol{w}|_2^2 = \sum w_i^2 w22=wi2
参数特性产生稀疏解(参数可能为零)参数更平滑(接近零但不为零)
特征选择可以选择特征不适用于特征选择
计算效率非凸优化,计算复杂凸优化,计算简单
适用场景高维稀疏数据常规数据,避免过拟合

5.应用:控制模型复杂度

  1. 减少过拟合

    • 正则化通过限制参数的幅度,避免模型过度拟合训练数据中的噪声。
  2. 提高泛化能力

    • 限制模型复杂度,使其在新数据上表现更稳定。
  3. 特征选择

    • L1 正则化的稀疏性帮助自动选择重要特征。

6.超参数 λ \lambda λ 的选择

正则化强度 λ \lambda λ 是一个超参数,其值需要通过交叉验证或网格搜索来选择。

  • λ \lambda λ 较小
    • 正则化效果弱,模型复杂度高,容易过拟合。
  • λ \lambda λ 较大
    • 正则化效果强,模型复杂度低,可能导致欠拟合。

7.总结

正则化是控制模型复杂度的重要方法,通过引入 L1 或 L2 正则化项,既可以提高模型的泛化能力,又可以在某些场景下实现特征选择。合理设置正则化强度 λ \lambda λ,能够帮助模型在偏差与方差之间取得良好的平衡。

相关文章:

【机器学习】- L1L2 正则化操作

目录 0.引言1.正则化的基本思想2.L1 正则化3.L2 正则化4.L1 与 L2 正则化的比较5.应用:控制模型复杂度6.超参数 λ \lambda λ 的选择7.总结 0.引言 在机器学习中,正则化是一种通过约束模型参数来控制模型复杂度的技术。它可以有效减少过拟合&#xff…...

Logback实战指南:基础知识、实战应用及最佳实践全攻略

背景 在Java系统实现过程中,我们不可避免地会借助大量开源功能组件。然而,这些组件往往功能丰富且体系庞大,官方文档常常详尽至数百页。而在实际项目中,我们可能仅需使用其中的一小部分功能,这就造成了一个挑战&#…...

基于python的机器学习(三)—— 关联规则与推荐算法

目录 一、关联规则挖掘 1.1 基本概念 1.2 Apriori算法 1.2.1 Apriori算法的原理 1.2.2 Apriori算法的实例 1.2.3 Apriori算法的程序实现(efficient-apriori模块) 1.3 FP-Growth算法 1.3.1 FP-Growth算法的原理 1.3.2 FP-Growth算法的实例 二、…...

【大模型】LLaMA: Open and Efficient Foundation Language Models

链接:https://arxiv.org/pdf/2302.13971 论文:LLaMA: Open and Efficient Foundation Language Models Introduction 规模和效果 7B to 65B,LLaMA-13B 超过 GPT-3 (175B)Motivation 如何最好地缩放特定训练计算预算的数据集和模型大小&…...

模拟器多开限制ip,如何设置单窗口单ip,每个窗口ip不同

很多手游多开玩家都是利用安卓模拟器实现手游多开,但是很多手游会限制ip,导致多开之后封号等问题,模拟器本身没有更换IP的功能,就需要通过第三方软件来实现 安卓模拟器概述 雷电模拟器、夜神模拟器、mum模拟器等都是目前市场上比较…...

hive的存储格式

1) 四种存储格式 hive的存储格式分为两大类:一类纯文本文件,一类是二进制文件存储。 Hive支持的存储数据的格式主要有:TEXTFILE、SEQUENCEFILE、ORC、PARQUET 第一类:纯文本文件存储 textfile: 纯文本文件存储格式…...

鸿蒙学习高效开发与测试-应用程序框架(3)

文章目录 1、应用程序框架1、规范化后台进程管理2、原生支持分布式3、支持多设备的统一窗口管理4、 组件共享及面向对象5、逻辑与界面解耦6、灵活扩展机制2、HarmonyOS SDK1、 开放能力 Kit2、开放能力的检索和使用3、 方舟工具链4、前端编译器架构1、应用程序框架 应 用 程 序…...

什么命令可以查看数据库中表的结构

1. MySQL 查看表结构 sql 复制代码 DESCRIBE 表名; 或者: sql 复制代码 SHOW COLUMNS FROM 表名; 更详细的表信息 sql 复制代码 SHOW CREATE TABLE 表名; 2. PostgreSQL 查看表结构 sql 复制代码 \d 表名 列出表的字段及类型 sql 复制代码 SELECT column_name, da…...

django基于python 语言的酒店推荐系统

摘 要 酒店推荐系统旨在提供一个全面酒店推荐在线平台,该系统允许用户浏览不同的客房类型,并根据个人偏好和需求推荐合适的酒店客房。用户可以便捷地进行客房预订,并在抵达后简化入住登记流程。为了确保连续的住宿体验,系统还提供…...

【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取

1、往onnx中写入 在训练完毕之后,我们先使用torch.onnx.export() 导出onnx模型,然后我们再使用以下代码来往metadata中写入信息: # Metadatad {# stride: int(max(model.stride)),names: model.names,mean : [0,0,0],std : [1,1,1],normali…...

WebSocket详解、WebSocket入门案例

目录 1.1 WebSocket介绍 http协议: webSocket协议: 1.2WebSocket协议: 1.3客户端(浏览器)实现 1.3.2 WebSocket对象的相关事宜: 1.3.3 WebSOcket方法 1.4 服务端实现 服务端如何接收客户端发送的请…...

05_Spring JdbcTemplate

在继续了解Spring的核心知识前,我们先看看Spring的一个模板类JdbcTemplate,它是一个JDBC的模板类,用来简化JDBC的操作。 接下来以实际来进行说明 一、实例环境准备 数据库及表准备 我们在本地mysql中新增一个数据库test,并新增一张数据表:user create database if not…...

Bug:引入Feign后触发了2次、4次ContextRefreshedEvent

Bug:引入Feign后发现监控onApplication中ContextRefreshedEvent事件触发了2次或者4次。 【原理】在Spring的文档注释中提示到: Event raised when an {code ApplicationContext} gets initialized or refreshed.即当 ApplicationContext 进行初始化或者刷…...

最新‌VSCode保姆级安装教程(附安装包)

文章目录 一、VSCode介绍 二、VSCode下载 下载链接:https://pan.quark.cn/s/19a303ff81fc 三、VSCode安装 1.解压安装文件:双击打开并安装VSCode 2.勾选我同意协议:然后点击下一步 3.选择目标位置:点击浏览 4.选择D盘安装&…...

layui 表格点击编辑感觉很好用,实现方法如下

1. 在 HTML 页面中引入 layui 的相关资源文件&#xff1a;html <link rel"stylesheet" href"https://cdn.staticfile.org/layui/2.5.6/css/layui.css"> <script src"https://cdn.staticfile.org/layui/2.5.6/layui.js"></script&…...

三十一、构建完善微服务——API 网关

一、API 网关基础 系统拆分为微服务后&#xff0c;内部的微服务之间是互联互通的&#xff0c;相互之间的访问都是点对点的。如果外部系统想调用系统的某个功能&#xff0c;也采取点对点的方式&#xff0c;则外部系统会非常“头大”。因为在外部系统看来&#xff0c;它不需要也没…...

非对称之美(贪心)

非对称之美(贪心) import java.util.*; public class Main{public static void main(String[] arg) {Scanner in new Scanner(System.in);char[] ch in.next().toCharArray(); int n ch.length; int flag 1;for(int i 1; i < n; i) {if(ch[i] ! ch[0]) {flag …...

详细教程-Linux上安装单机版的Hadoop

1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码&#xff1a;0pfj 2、配置免密码登录 生成秘钥&#xff1a; ssh-keygen -t rsa -P 将秘钥写入认…...

C#桌面应用制作计算器进阶版01

基于C#桌面应用制作计算器做出了少量改动&#xff0c;其主要改动为新增加了一个label控件&#xff0c;使其每一步运算结果由label2展示出来&#xff0c;而当点击“”时&#xff0c;最终运算结果将由label1展示出来&#xff0c;此时label清空。 修改后运行效果 修改后全篇代码 …...

[开源] 告别黑苹果!用docker安装MacOS体验苹果系统

没用过苹果电脑的朋友可能会对苹果系统好奇&#xff0c;有人甚至会为了尝鲜MacOS去折腾黑苹果。如果你只是想体验一下MacOS&#xff0c;这里有个更简单更优雅的解决方案&#xff0c;用docker安装MacOS来体验苹果系统。 一、项目简介 项目描述 Docker 容器内的 OSX&#xff08…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...