【机器学习】- L1L2 正则化操作
目录
- 0.引言
- 1.正则化的基本思想
- 2.L1 正则化
- 3.L2 正则化
- 4.L1 与 L2 正则化的比较
- 5.应用:控制模型复杂度
- 6.超参数 λ \lambda λ 的选择
- 7.总结
0.引言
在机器学习中,正则化是一种通过约束模型参数来控制模型复杂度的技术。它可以有效减少过拟合,提高模型的泛化能力。常见的正则化方法包括 L1 正则化 和 L2 正则化。
1.正则化的基本思想
在训练模型时,我们的目标是最小化损失函数。正则化通过在损失函数中加入一个正则化项,对模型参数施加约束,从而避免过于复杂的模型。
带有正则化的损失函数一般形式为:
损失函数 = 数据误差 + λ ⋅ 正则化项 \text{损失函数} = \text{数据误差} + \lambda \cdot \text{正则化项} 损失函数=数据误差+λ⋅正则化项
其中:
- 数据误差:如均方误差 (MSE) 或交叉熵损失。
- 正则化项:对模型参数的约束,如 L 1 L1 L1 或 L 2 L2 L2。
- λ \lambda λ:正则化强度(超参数),控制正则化项的权重。
2.L1 正则化
-
定义
L1 正则化的正则化项是模型参数的绝对值之和:R ( w ) = ∥ w ∥ 1 = ∑ i = 1 n ∣ w i ∣ R(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{i=1}^n |w_i| R(w)=∥w∥1=i=1∑n∣wi∣
L1 正则化后的损失函数为:
L = 数据误差 + λ ∑ i = 1 n ∣ w i ∣ L = \text{数据误差} + \lambda \sum_{i=1}^n |w_i| L=数据误差+λi=1∑n∣wi∣
-
特性
- 通过惩罚参数的绝对值,鼓励某些参数变为零。
- 适合特征选择,因为它会自动剔除不重要的特征(参数为零)。
-
适用场景
- 特征数量较多,且希望通过稀疏性来筛选重要特征(如高维数据)。
3.L2 正则化
-
定义
L2 正则化的正则化项是模型参数的平方和:R ( w ) = ∥ w ∥ 2 2 = ∑ i = 1 n w i 2 R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2 = \sum_{i=1}^n w_i^2 R(w)=∥w∥22=i=1∑nwi2
L2 正则化后的损失函数为:
L = 数据误差 + λ ∑ i = 1 n w i 2 L = \text{数据误差} + \lambda \sum_{i=1}^n w_i^2 L=数据误差+λi=1∑nwi2
-
特性
- 通过惩罚参数的平方值,鼓励模型参数较小但不为零。
- 与 L1 不同,它不会让参数变为完全零,而是接近零。
-
适用场景
- 当希望模型平滑,避免过度拟合时(如线性回归)。
4.L1 与 L2 正则化的比较
特性 | L1 正则化 | L2 正则化 |
---|---|---|
正则化项 | ∣ w ∣ 1 = ∑ w i |\boldsymbol{w}|_1 = \sum w_i ∣w∣1=∑wi | ∣ w ∣ 2 2 = ∑ w i 2 |\boldsymbol{w}|_2^2 = \sum w_i^2 ∣w∣22=∑wi2 |
参数特性 | 产生稀疏解(参数可能为零) | 参数更平滑(接近零但不为零) |
特征选择 | 可以选择特征 | 不适用于特征选择 |
计算效率 | 非凸优化,计算复杂 | 凸优化,计算简单 |
适用场景 | 高维稀疏数据 | 常规数据,避免过拟合 |
5.应用:控制模型复杂度
-
减少过拟合
- 正则化通过限制参数的幅度,避免模型过度拟合训练数据中的噪声。
-
提高泛化能力
- 限制模型复杂度,使其在新数据上表现更稳定。
-
特征选择
- L1 正则化的稀疏性帮助自动选择重要特征。
6.超参数 λ \lambda λ 的选择
正则化强度 λ \lambda λ 是一个超参数,其值需要通过交叉验证或网格搜索来选择。
- λ \lambda λ 较小:
- 正则化效果弱,模型复杂度高,容易过拟合。
- λ \lambda λ 较大:
- 正则化效果强,模型复杂度低,可能导致欠拟合。
7.总结
正则化是控制模型复杂度的重要方法,通过引入 L1 或 L2 正则化项,既可以提高模型的泛化能力,又可以在某些场景下实现特征选择。合理设置正则化强度 λ \lambda λ,能够帮助模型在偏差与方差之间取得良好的平衡。
相关文章:
【机器学习】- L1L2 正则化操作
目录 0.引言1.正则化的基本思想2.L1 正则化3.L2 正则化4.L1 与 L2 正则化的比较5.应用:控制模型复杂度6.超参数 λ \lambda λ 的选择7.总结 0.引言 在机器学习中,正则化是一种通过约束模型参数来控制模型复杂度的技术。它可以有效减少过拟合ÿ…...

Logback实战指南:基础知识、实战应用及最佳实践全攻略
背景 在Java系统实现过程中,我们不可避免地会借助大量开源功能组件。然而,这些组件往往功能丰富且体系庞大,官方文档常常详尽至数百页。而在实际项目中,我们可能仅需使用其中的一小部分功能,这就造成了一个挑战&#…...

基于python的机器学习(三)—— 关联规则与推荐算法
目录 一、关联规则挖掘 1.1 基本概念 1.2 Apriori算法 1.2.1 Apriori算法的原理 1.2.2 Apriori算法的实例 1.2.3 Apriori算法的程序实现(efficient-apriori模块) 1.3 FP-Growth算法 1.3.1 FP-Growth算法的原理 1.3.2 FP-Growth算法的实例 二、…...

【大模型】LLaMA: Open and Efficient Foundation Language Models
链接:https://arxiv.org/pdf/2302.13971 论文:LLaMA: Open and Efficient Foundation Language Models Introduction 规模和效果 7B to 65B,LLaMA-13B 超过 GPT-3 (175B)Motivation 如何最好地缩放特定训练计算预算的数据集和模型大小&…...

模拟器多开限制ip,如何设置单窗口单ip,每个窗口ip不同
很多手游多开玩家都是利用安卓模拟器实现手游多开,但是很多手游会限制ip,导致多开之后封号等问题,模拟器本身没有更换IP的功能,就需要通过第三方软件来实现 安卓模拟器概述 雷电模拟器、夜神模拟器、mum模拟器等都是目前市场上比较…...

hive的存储格式
1) 四种存储格式 hive的存储格式分为两大类:一类纯文本文件,一类是二进制文件存储。 Hive支持的存储数据的格式主要有:TEXTFILE、SEQUENCEFILE、ORC、PARQUET 第一类:纯文本文件存储 textfile: 纯文本文件存储格式…...
鸿蒙学习高效开发与测试-应用程序框架(3)
文章目录 1、应用程序框架1、规范化后台进程管理2、原生支持分布式3、支持多设备的统一窗口管理4、 组件共享及面向对象5、逻辑与界面解耦6、灵活扩展机制2、HarmonyOS SDK1、 开放能力 Kit2、开放能力的检索和使用3、 方舟工具链4、前端编译器架构1、应用程序框架 应 用 程 序…...
什么命令可以查看数据库中表的结构
1. MySQL 查看表结构 sql 复制代码 DESCRIBE 表名; 或者: sql 复制代码 SHOW COLUMNS FROM 表名; 更详细的表信息 sql 复制代码 SHOW CREATE TABLE 表名; 2. PostgreSQL 查看表结构 sql 复制代码 \d 表名 列出表的字段及类型 sql 复制代码 SELECT column_name, da…...

django基于python 语言的酒店推荐系统
摘 要 酒店推荐系统旨在提供一个全面酒店推荐在线平台,该系统允许用户浏览不同的客房类型,并根据个人偏好和需求推荐合适的酒店客房。用户可以便捷地进行客房预订,并在抵达后简化入住登记流程。为了确保连续的住宿体验,系统还提供…...
【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取
1、往onnx中写入 在训练完毕之后,我们先使用torch.onnx.export() 导出onnx模型,然后我们再使用以下代码来往metadata中写入信息: # Metadatad {# stride: int(max(model.stride)),names: model.names,mean : [0,0,0],std : [1,1,1],normali…...

WebSocket详解、WebSocket入门案例
目录 1.1 WebSocket介绍 http协议: webSocket协议: 1.2WebSocket协议: 1.3客户端(浏览器)实现 1.3.2 WebSocket对象的相关事宜: 1.3.3 WebSOcket方法 1.4 服务端实现 服务端如何接收客户端发送的请…...
05_Spring JdbcTemplate
在继续了解Spring的核心知识前,我们先看看Spring的一个模板类JdbcTemplate,它是一个JDBC的模板类,用来简化JDBC的操作。 接下来以实际来进行说明 一、实例环境准备 数据库及表准备 我们在本地mysql中新增一个数据库test,并新增一张数据表:user create database if not…...

Bug:引入Feign后触发了2次、4次ContextRefreshedEvent
Bug:引入Feign后发现监控onApplication中ContextRefreshedEvent事件触发了2次或者4次。 【原理】在Spring的文档注释中提示到: Event raised when an {code ApplicationContext} gets initialized or refreshed.即当 ApplicationContext 进行初始化或者刷…...

最新VSCode保姆级安装教程(附安装包)
文章目录 一、VSCode介绍 二、VSCode下载 下载链接:https://pan.quark.cn/s/19a303ff81fc 三、VSCode安装 1.解压安装文件:双击打开并安装VSCode 2.勾选我同意协议:然后点击下一步 3.选择目标位置:点击浏览 4.选择D盘安装&…...
layui 表格点击编辑感觉很好用,实现方法如下
1. 在 HTML 页面中引入 layui 的相关资源文件:html <link rel"stylesheet" href"https://cdn.staticfile.org/layui/2.5.6/css/layui.css"> <script src"https://cdn.staticfile.org/layui/2.5.6/layui.js"></script&…...

三十一、构建完善微服务——API 网关
一、API 网关基础 系统拆分为微服务后,内部的微服务之间是互联互通的,相互之间的访问都是点对点的。如果外部系统想调用系统的某个功能,也采取点对点的方式,则外部系统会非常“头大”。因为在外部系统看来,它不需要也没…...

非对称之美(贪心)
非对称之美(贪心) import java.util.*; public class Main{public static void main(String[] arg) {Scanner in new Scanner(System.in);char[] ch in.next().toCharArray(); int n ch.length; int flag 1;for(int i 1; i < n; i) {if(ch[i] ! ch[0]) {flag …...

详细教程-Linux上安装单机版的Hadoop
1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包: 链接:https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码:0pfj 2、配置免密码登录 生成秘钥: ssh-keygen -t rsa -P 将秘钥写入认…...

C#桌面应用制作计算器进阶版01
基于C#桌面应用制作计算器做出了少量改动,其主要改动为新增加了一个label控件,使其每一步运算结果由label2展示出来,而当点击“”时,最终运算结果将由label1展示出来,此时label清空。 修改后运行效果 修改后全篇代码 …...

[开源] 告别黑苹果!用docker安装MacOS体验苹果系统
没用过苹果电脑的朋友可能会对苹果系统好奇,有人甚至会为了尝鲜MacOS去折腾黑苹果。如果你只是想体验一下MacOS,这里有个更简单更优雅的解决方案,用docker安装MacOS来体验苹果系统。 一、项目简介 项目描述 Docker 容器内的 OSX(…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...