torch.set_printoptions
torch.set_printoptions
设置pytorch打印张量时的选项,比如限制打印的元素数量、设置精度等。在打印大张量或者需要更精确控制输出格式时非常有用。
torch.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None)
precision– 浮点输出的精度位数(默认值 = 4)。threshold– 输出的数组元素总数(默认值 = 1000)。edgeitems– 每个维度开头和结尾的元素数 (默认值 = 3)。linewidth– 用于插入换行符的每行字符数(默认值 = 80)。profile– 打印选项。可被上述任何选项覆盖。(三个选项:default、short、full)sci_mode– 启用 (True) 或禁用 (False) 科学记数法。
示例 1:设置打印的元素数量
import torch
# 创建一个大张量
big_tensor = torch.randn(1000, 1000)
# 设置打印选项,限制每行打印的元素数量为5
torch.set_printoptions(edgeitems=5)
# 打印大张量
print(big_tensor)
'''output
tensor([[ 7.096e-01, -2.319e-01, -3.508e-01, -1.490e+00, -2.094e+00, ..., 2.418e+00,2.191e+00, -1.097e+00, -8.462e-03, 1.543e+00],[-3.659e-01, -2.529e+00, -5.387e-01, -9.730e-01, 1.106e+00, ..., 2.867e-01,-2.998e-01, 1.395e+00, 1.922e-01, -2.857e+00],[-1.248e+00, 9.511e-02, 1.104e+00, -2.893e-01, 2.386e-01, ..., -4.030e-01,-1.431e+00, 1.698e+00, 7.792e-02, 5.647e-01],[-8.082e-01, -1.269e+00, -9.518e-01, -1.230e+00, 1.623e-01, ..., 6.505e-01,1.299e-01, -2.172e+00, 9.718e-01, 1.547e-01],[ 3.541e-01, -1.212e+00, 1.333e+00, -8.269e-01, 3.842e-01, ..., -2.083e-01,2.715e+00, 1.210e+00, -1.783e+00, -7.736e-01],...,[ 3.425e-02, -6.938e-01, 6.390e-02, -1.265e+00, 3.217e-01, ..., 1.713e+00,5.801e-01, 1.101e+00, -1.443e+00, -2.739e-01],[ 8.133e-01, -1.418e+00, -6.581e-01, 2.327e+00, 1.146e+00, ..., 6.545e-01,-7.152e-01, -6.270e-01, -9.436e-01, -1.858e+00],[ 1.339e+00, 6.877e-02, -1.111e+00, 8.770e-01, 1.358e+00, ..., -2.793e+00,-1.135e-01, 1.498e+00, 6.292e-01, 1.196e+00],[-1.095e-01, 6.439e-01, -7.375e-01, 4.185e-01, -1.045e-01, ..., -1.521e+00,6.631e-01, 2.701e-01, 1.107e-01, -1.860e-01],[-1.281e+00, 3.997e-01, 1.881e-03, 1.170e+00, 4.183e-01, ..., 3.738e-01,5.330e-01, -2.445e-01, 7.956e-01, -7.097e-01]], device='cuda:0')
'''
示例 2:设置打印的精度
import torch# 创建一个包含小数的张量
tensor = torch.tensor([1.123456789, 2.987654321])# 设置打印选项,限制打印的浮点数精度为3位小数
torch.set_printoptions(precision=3)# 打印张量
print(tensor)
'''output
tensor([1.123, 2.988], device='cuda:0')
'''
示例 3:设置科学记数法的阈值
import torch# 创建一个包含大数和小子数的张量
tensor = torch.tensor([1e-5, 1e5])# 设置打印选项,当绝对值小于1e-3时使用科学记数法
torch.set_printoptions(sci_mode=True, threshold=1e3)# 打印张量
print(tensor)
'''output
tensor([1.000e-05, 1.000e+05], device='cuda:0')
'''
示例 4:设置张量的边距
import torch# 创建一个张量
tensor = torch.randn(5, 5)# 设置打印选项,行字符宽度
torch.set_printoptions(edgeitems=3, linewidth=40)
# 打印张量
print(tensor)# 设置打印选项,行字符宽度
torch.set_printoptions(edgeitems=3, linewidth=50)
# 打印张量
print(tensor)
'''output
tensor([[-0.787, 0.227, -1.878, 0.286,-0.899],[ 0.483, 1.054, 0.770, -0.245,1.599],[ 0.165, -0.034, 1.457, -0.944,0.601],[-0.150, 0.388, -0.811, -0.741,1.286],[-0.657, -0.895, 0.680, 0.946,-1.832]], device='cuda:0')
tensor([[-0.787, 0.227, -1.878, 0.286, -0.899],[ 0.483, 1.054, 0.770, -0.245, 1.599],[ 0.165, -0.034, 1.457, -0.944, 0.601],[-0.150, 0.388, -0.811, -0.741, 1.286],[-0.657, -0.895, 0.680, 0.946, -1.832]],device='cuda:0')'''
示例 5:恢复默认打印选项
import torch# 创建一个张量
tensor = torch.randn(5, 5)# 恢复默认打印选项
torch.set_printoptions(profile='default')
# 打印张量
print(tensor)# 设置打印选项为short
torch.set_printoptions(profile='short')
# 打印张量
print(tensor)# 设置打印选项为full
torch.set_printoptions(profile='full')
# 打印张量
print(tensor)
'''output
tensor([[-0.4571, 0.3753, -1.5940, -0.7643, -2.1443],[ 0.6022, -0.7247, -0.0522, 1.3891, 0.5575],[ 0.6133, -0.4906, 0.8597, -0.7087, 2.1163],[-0.0721, 0.7349, 1.2677, 0.8921, -0.2049],[ 0.3666, 0.1874, 1.7164, 1.0258, -1.8709]], device='cuda:0')
tensor([[-0.46, 0.38, -1.59, -0.76, -2.14],[ 0.60, -0.72, -0.05, 1.39, 0.56],[ 0.61, -0.49, 0.86, -0.71, 2.12],[-0.07, 0.73, 1.27, 0.89, -0.20],[ 0.37, 0.19, 1.72, 1.03, -1.87]], device='cuda:0')
tensor([[-0.4571, 0.3753, -1.5940, -0.7643, -2.1443],[ 0.6022, -0.7247, -0.0522, 1.3891, 0.5575],[ 0.6133, -0.4906, 0.8597, -0.7087, 2.1163],[-0.0721, 0.7349, 1.2677, 0.8921, -0.2049],[ 0.3666, 0.1874, 1.7164, 1.0258, -1.8709]], device='cuda:0')'''
相关文章:
torch.set_printoptions
torch.set_printoptions 设置pytorch打印张量时的选项,比如限制打印的元素数量、设置精度等。在打印大张量或者需要更精确控制输出格式时非常有用。 torch.set_printoptions(precisionNone, thresholdNone, edgeitemsNone, linewidthNone, profileNone, sci_modeN…...
Nexus搭建go私有仓库,加速下载go依赖包
一、搭建go私库 本文我们梳理一下go依赖包的私库搭建以及使用。 它只分为proxy和group两种仓库,这一点和maven仓库有所不同。 1、创建Blob Stores 为了区分不同的私库依赖包,存储的位置分隔开。 2、新建go proxy官网 Remote storage:htt…...
Qt6 Android设置文件读写权限设置
一.概述 1.在Qt中设置Android应用程序的文件读写权限,你需要在Android的Manifest文件中声明所需的权限。对于文件读写,通常需要声明以下权限: android.permission.READ_EXTERNAL_STORAGE:允许应用程序从外部存储读取数据。 android.permission.WRITE_EXTERNAL_STORAGE:允…...
TCP快速重传机制为啥出现重复ACK?
TCP快速重传机制为啥出现重复ACK 简单来说,丢失数据包后发送方至少发了三个请求,每个请求返回接收方下一次期待的序列号ACK,也就是丢失数据包之前的一个正常请求的确认ACK值 在 TCP(Transmission Control Protocol,传…...
SSM--SpringMVC复习(二)
请求 URL匹配: RequestMapping RequestMapping 负责将请求映射到对应的控制器方法上。 RequestMapping 注解可用于类或方法上。用于类上,表示类中的所有响应请求的方法都以该地址作为父路径。 在整个 Web 项目中,RequestMapping 映射的请求…...
C语言蓝桥杯组题目
系列文章目录 文章目录 系列文章目录前言题目第一题.1, 2, 3, 4 能组成多少个互不相同且无重复数字的三位数?都是多少?思路 第二题: 一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少…...
【解决】Unity TMPro字体中文显示错误/不全问题
问题描述:字体变成方块 原因:字体资源所承载的长度有限 1.找一个中文字体放入Assets中 2.选中字体创建为TMPro 字体资源 3.选中创建好的字体资源(蓝色的大F) 在右边的属性中找到Atlas Width h和 Atlas Heigth,修改的大一点&…...
【Threejs进阶教程-着色器篇】9.顶点着色器入门
【Threejs进阶教程-着色器篇】9.顶点着色器入门 本系列教程第一篇地址,建议按顺序学习认识顶点着色器varying介绍顶点着色器与片元着色器分别的作用Threejs在Shader中的内置变量各种矩阵gl_Position 尝试使用顶点着色器增加分段数增强效果 制作平面鼓包效果鼓包效果…...
质量留住用户:如何通过测试自动化提供更高质量的用户体验
在当今竞争异常激烈的市场中,用户手头有无数种选择,但有一条真理至关重要: 质量留住用户。 产品的质量,尤其是用户体验 (UX),直接决定了客户是留在您的品牌还是转而选择竞争对手。随着业务的发展,出色的用户…...
【CSP CCF记录】201803-1第13次认证 跳一跳
题目 样例输入 1 1 2 2 2 1 1 2 2 0 样例输出 22 思路 没有技术含量的一道题,解题的关键是理解游戏规则。用state标记跳跃状态,以下是对游戏规则的分析: 1. state1,跳到方块上但没跳到中心,得1分 2. state2…...
详解Qt 中使用虚拟键盘(软键盘qtvirtualkeyboard)
文章目录 详解 Qt 中使用虚拟键盘(软键盘:QtVirtualKeyboard)1. 虚拟键盘简介1.1 虚拟键盘的应用场景 2. 安装和配置2.1 安装 QtVirtualKeyboard2.2 配置环境变量 3. 使用虚拟键盘3.1 示例代码main.cppwidget.hwidget.cpp 4. 总结 详解 Qt 中…...
cocoscreater3.8.4生成图集并使用
1.安装texturepacker,去官网下载https://www.codeandweb.com/texturepacker 2.将图片拖动进来,即可自动生成精灵表,这里输出选用cocos2d-x,打包用免费版的“基本”就行,高级模式是收费的,然后点击“发布精…...
IDEA如何快速地重写方法,如equals、toString等
前言 大家好,我是小徐啊。我们在使用IDEA的时候,有时候是需要重写equals和toString等方法的。这在IDEA中已经很方便的给我们准备好了快速的操作了。今天就来讲解一下。 如何重写 首先,打开要重写方法的文件,让鼠标定位到这个文…...
网络安全——SpringBoot配置文件明文加密
一、前言 在日常开发中,项目中会有很多配置文件。比如SpringBoot项目核心的数据库配置、Redis账号密码配置都在properties、yml配置文件 中。 如果这些信息以明文的方式存储,你的电脑被拿去修理,就会容易泄露,一旦被其他人获取到…...
LightRAG开源了…结合本地ollama实现股票数据接口Akshare智能问答
LightRAG是由香港大学研究团队推出的一种检索增强生成(Retrieval-Augmented Generation, RAG)系统。该系统通过整合图结构索引和双层检索机制,显著提升了大型语言模型在信息检索中的准确性和效率。LightRAG 不仅能够捕捉实体间的复杂依赖关系…...
【PCB设计】AD16教程:分配位号
1、前提条件 确保已经基本画完原理图 2、点击【Tools-Annotate Schematics】 3、依次点击【Reset All】、【Update Changes Lise】、【Close】 最后位号就被自动分配好了...
ElasticSearch7.x入门教程之索引概念和基础操作(三)
文章目录 前言一、索引基本概念二、索引基本使用elasticsearch-head插件Kibana使用 总结 前言 要想熟悉使用ES的索引,则必须理解索引相关的概念,尤其是在工作当中。 在此记录,方便开展工作。 一、索引基本概念 尽量以通俗的话语。 1、集群…...
Python后端flask框架接收zip压缩包方法
一、用base64编码发送,以及接收 import base64 import io import zipfile from flask import request, jsonifydef unzip_and_find_png(zip_data):# 使用 BytesIO 在内存中处理 zip 数据with zipfile.ZipFile(io.BytesIO(zip_data), r) as zip_ref:extracted_paths…...
机器学习中数据集Upsampling和Downsampling是什么意思?中英文介绍
对GPT4o大模型的Prompt如下: Datasets marked with ↓ are downsampled from their original datasets, datasets marked with ↑ are upsampled.这里的上采样和下采样是什么意思 内容援引自:paper (https://allenai.org/papers/tulu-3-repor…...
浏览器控制台中使用ajax下载文件(没有postman等情况下)
有时候,可能电脑里面没有postman(比如内网),然后又需要导出一些文件,前端又没有提供相应的功能(比如循环调用导出等),这时候我们就可以通过在控制台写代码的方式来实现了。这个还是在…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
