深入解密 K 均值聚类:从理论基础到 Python 实践
1. 引言
在机器学习领域,聚类是一种无监督学习的技术,用于将数据集分组成若干个类别,使得同组数据之间具有更高的相似性。这种技术在各个领域都有广泛的应用,比如客户细分、图像压缩和市场分析等。聚类的目标是使得同类样本之间的相似性最大化,而不同类样本之间的相似性最小化。
K 均值聚类 (K-Means Clustering) 是一种基于距离度量的迭代优化算法,通过选择若干个质心 (centroid) 来对数据进行分组,使得每个数据点所属的聚类内距离质心的距离之和最小化。由于其算法的简单性和高效性,K 均值在数据分析中被广泛使用。
在现实生活中,我们可以将 K 均值聚类应用于客户细分,以帮助企业识别具有相似购买行为的客户群体,或者用于图像压缩,通过将图像像素点聚类来减少颜色的数量。在这篇文章中,我们将深入探讨 K 均值聚类的数学原理、算法实现步骤,并提供 Python 代码示例来帮助读者理解其实际应用。
2. 什么是 K 均值聚类?
K 均值聚类是一种基于质心的聚类算法,它通过反复迭代的方式将数据点分配到 K 个聚类中。每个质心代表一个聚类的中心位置,算法会不断调整质心的位置,直到满足一定的收敛条件。K 均值聚类的目标是最小化每个聚类内部所有点到其质心的距离之和。
具体来说,K 均值聚类的步骤可以概括如下:
-
随机选择 K 个初始质心。
-
将每个数据点分配到离它最近的质心所在的聚类。
-
重新计算每个聚类的质心,即对聚类中的所有数据点取平均值。
-
重复步骤 2 和 3,直到质心的位置不再发生变化,或者达到预设的迭代次数。
K 均值聚类的最终结果是 K 个聚类,每个聚类由一个质心及其所有属于该聚类的数据点组成。其目标是使得每个聚类内的数据点与质心之间的总距离最小。
3. K 均值聚类的数学原理
K 均值聚类的目标是最小化每个数据点到所属质心的距离的平方和 (Sum of Squared Errors, SSE):
其中,
-
:聚类的数量。
-
:第 i 个聚类。
-
:第 i 个聚类的质心。
-
:属于聚类 的数据点。
这个优化问题的目标是通过不断调整每个聚类的质心来最小化 SSE。该过程通过交替进行两步:分配 (Assignment) 和更新 (Update),直到达到收敛条件。
4. 算法实现步骤详解
K 均值聚类算法主要包含以下步骤:
步骤 1:选择 K 值
K 值是指要将数据分成的聚类数。选择合适的 K 值是 K 均值聚类算法中一个非常重要的步骤,因为不合适的 K 值会影响聚类的效果。通常可以通过 "肘部法则 (Elbow Method)" 来确定合适的 K 值。
步骤 2:初始化质心
可以随机选择 K 个数据点作为初始质心,或者使用一些启发式的方法,如 K-Means++,以更好地初始化质心,减少随机性对聚类效果的影响。
步骤 3:分配数据点
将每个数据点分配到离它最近的质心所在的聚类中。通常使用欧几里得距离来计算数据点与质心之间的距离。
步骤 4:更新质心
对于每一个聚类,重新计算其质心的位置。具体来说,将聚类中的所有数据点的坐标进行平均,得到新的质心位置。
步骤 5:收敛判断
判断质心是否发生变化。如果质心位置不再变化,或者达到预设的最大迭代次数,算法停止。此时的聚类结果即为最终的聚类划分。
5. Python 代码实现
下面我们用 Python 及其常用库 NumPy 和 Matplotlib 实现 K 均值聚类算法:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
# 生成模拟数据集
np.random.seed(42)
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)
# 可视化数据集
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Generated Data')
plt.show()
# 定义K均值聚类算法
class KMeans:def __init__(self, k=3, max_iters=100, tol=1e-4):self.k = kself.max_iters = max_itersself.tol = tol
def fit(self, X):self.centroids = X[np.random.choice(range(X.shape[0]), self.k, replace=False)]for _ in range(self.max_iters):# 分配数据点到最近的质心self.clusters = self._assign_clusters(X)# 重新计算质心new_centroids = self._compute_centroids(X)# 检查质心是否收敛if np.all(np.linalg.norm(self.centroids - new_centroids, axis=1) < self.tol):breakself.centroids = new_centroids
def _assign_clusters(self, X):distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)return np.argmin(distances, axis=1)
def _compute_centroids(self, X):return np.array([X[self.clusters == i].mean(axis=0) for i in range(self.k)])
def predict(self, X):distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)return np.argmin(distances, axis=1)
# 训练模型
kmeans = KMeans(k=4)
kmeans.fit(X)
# 预测聚类结果
y_pred = kmeans.predict(X)
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap='viridis', s=50)
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=200, c='red', marker='X')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means Clustering Results')
plt.show()
6. 选择 K 值:肘部法则
选择合适的 K 值是 K 均值聚类的重要步骤。肘部法则是一种常用的方法,它通过计算不同 K 值下 SSE 的变化趋势来选择合适的 K。随着 K 的增加,SSE 会减少,但当减少的速度显著减小时,最佳 K 值即为 "肘部点"。
以下是使用肘部法则的代码示例:
sse = []
for k in range(1, 10):kmeans = KMeans(k=k)kmeans.fit(X)sse.append(sum(np.min(np.linalg.norm(X[:, np.newaxis] - kmeans.centroids, axis=2), axis=1) ** 2))
# 可视化肘部法则
plt.plot(range(1, 10), sse, marker='o')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('SSE')
plt.title('Elbow Method for Optimal K')
plt.show()
7. K 均值聚类的优缺点
优点:
-
简单易懂:K 均值聚类算法简单直观,易于实现。
-
高效性:对于较大规模的数据,K 均值算法计算效率较高。
缺点:
-
对初始值敏感:算法对初始质心位置敏感,可能陷入局部最优。K-Means++ 是一种改进方法,可以更好地选择初始质心。
-
需指定 K 值:K 值需要事先给定,这对于不熟悉数据结构的用户来说是个挑战。
-
易受异常值影响:异常值对质心计算有较大影响,可能使结果偏离。
8. K-Means++ 的改进
为了减少对初始质心选择的敏感性,K-Means++ 提供了一种改进策略,确保初始质心尽可能分散,减少局部最优解的可能性。Scikit-Learn 库实现的 KMeans 就采用了 K-Means++ 作为默认的初始质心选择方法。
from sklearn.cluster import KMeans
# 使用KMeans++初始化
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
y_kmeans = kmeans.fit_predict(X)
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis', s=50)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=200, c='red', marker='X')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means++ Clustering Results')
plt.show()
9. 实际应用
K 均值聚类在实际生活中有着广泛的应用,包括:
-
客户细分:根据购买行为或浏览习惯将客户进行分类,方便精准营销。
-
图像压缩:通过对图像的像素进行聚类,将相似颜色的像素归为同一类,从而减少颜色种类,达到压缩图像的目的。
-
市场分析:K 均值可以用于找出不同市场中的相似产品。
10. 总结
K 均值聚类是一种强大且简单的聚类算法,适合处理结构化的数值数据。它在很多应用场景下表现良好,但也有其局限性,比如对初始值敏感和易受异常值影响。在实际应用中,结合肘部法则和 K-Means++ 等改进方法,可以提高聚类效果。
希望本文让你对 K 均值聚类的原理和实现有更深的理解,并能利用代码在自己的项目中进行聚类分析。如果你有任何问题或建议,欢迎在评论区交流!
相关文章:

深入解密 K 均值聚类:从理论基础到 Python 实践
1. 引言 在机器学习领域,聚类是一种无监督学习的技术,用于将数据集分组成若干个类别,使得同组数据之间具有更高的相似性。这种技术在各个领域都有广泛的应用,比如客户细分、图像压缩和市场分析等。聚类的目标是使得同类样本之间的…...

ArcGIS应用指南:ArcGIS制作局部放大地图
在地理信息系统(GIS)中,制作详细且美观的地图是一项重要的技能。地图制作不仅仅是简单地将地理数据可视化,还需要考虑地图的可读性和美观性。局部放大图是一种常见的地图设计技巧,用于展示特定区域的详细信息ÿ…...

非root用户安装CUDA
1.使用nvidia-smi查看当前驱动支持的最高CUDA版本: 表示当前驱动最多支持cuda12.1 2.进入cuda安装界面,https://developer.nvidia.com/cuda-toolkit-archive,选择想要安装的版本,例如想要安装CUDA11.4: 如果需要查看ub…...

单点修改,区间求和或区间询问最值(线段树)
【题目描述】 给定一个长度为n的非负整数序列,接下来有m次操作,操作共有3种:一是修改序列中某个元素的大小,二是求某个区间的所有元素的和,三是询问某个区间的最大值。整数序列下标从1开始。n<10^5, m<10^5。 …...

线性代数空间理解
学习线性代数已经很久,但是在使用过程中仍然还是不明所以,比如不知道特征向量和特征值的含义、矩阵的相乘是什么意思、如何理解矩阵的秩……。随着遇到的次数越来越多,因此我决定需要对线性代数的本质做一次深刻的探讨了。 本次主要是参考了3…...

Spring Boot教程之五:在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序
在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序 IntelliJ IDEA 是一个用 Java 编写的集成开发环境 (IDE)。它用于开发计算机软件。此 IDE 由 Jetbrains 开发,提供 Apache 2 许可社区版和商业版。它是一种智能的上下文感知 IDE,可用于在各种应用程序…...

C51相关实验
C51相关实验 LED //功能:1.让开发板的LED全亮,2,点亮某一个LED,3.让LED3以5Hz的频率闪动#include "reg52.h"#define LED P2 sbit led1 LED^1;void main(void) {LED 0xff;//LED全灭led1 0;while(1)//保持应用程序不退出{} }LED 输出端是高…...

docker离线安装linux部分问题整理
0:离线安装docker过程命令 echo $PATH tar -zxvf docker-26.1.4.tgz chmod 755 -R docker cp docker/* /usr/bin/ root 权限 vim /etc/systemd/system/docker.service --------- [Unit] DescriptionDocker Application Container Engine Documentationhttps://docs.do…...

ISUP协议视频平台EasyCVR萤石设备视频接入平台银行营业网点安全防范系统解决方案
在金融行业,银行营业厅的安全保卫工作至关重要,它不仅关系到客户资金的安全,也关系到整个银行的信誉和运营效率。随着科技的发展,传统的安全防护措施已经无法满足现代银行对于高效、智能化安全管理的需求。 EasyCVR视频汇聚平台以…...

递推概念和例题
一、什么是递推 递推算法以初始值为基础,用相同的运算规律,逐次重复运算,直至求出问题的解,它的本质是按照固定的规律逐步推出(计算出)下一步的结果 这种从“起点”重复相同的的方法直至到达问题的解&…...

开发工具 - VSCode 快捷键
以下是一些常用的 VS Code 快捷键(Windows、macOS 和 Linux 均适用,略有不同): 常用快捷键 功能Windows/LinuxmacOS打开命令面板Ctrl Shift P 或 F1Cmd Shift P打开文件Ctrl OCmd O保存文件Ctrl SCmd S全部保存Ctrl K,…...

数据库的联合查询
数据库的联合查询 简介为什么要使⽤联合查询多表联合查询时MYSQL内部是如何进⾏计算的构造练习案例数据案例:⼀个完整的联合查询的过程 内连接语法⽰例 外连接语法 ⽰例⾃连接应⽤场景示例表连接练习 ⼦查询语法单⾏⼦查询多⾏⼦查询多列⼦查询在from⼦句中使⽤⼦查…...

【人工智能】基于PyTorch的深度强化学习入门:从DQN到PPO的实现与解析
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 深度强化学习(Deep Reinforcement Learning)是一种结合深度学习和强化学习的技术,适用于解决复杂的决策问题。深度Q网络(DQN)和近端策略优化(PPO)是其中两种经典的算法,被广泛应用于游戏、机器人控…...

【深度学习】【RKNN】【C++】模型转化、环境搭建以及模型部署的详细教程
【深度学习】【RKNN】【C】模型转化、环境搭建以及模型部署的详细教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【RKNN】【C】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转rknnpytorch转onnxonnx转rkn…...

CentOS环境上离线安装python3及相关包
0. 准备操作系统及安装包 准备操作系统环境: 首先安装依赖包,安装相应的编译工具 [rootbigdatahost bin]# yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-d…...

学习threejs,使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.MeshPhongMaterial高…...

React表单联动
Ant Design 1、dependencies Form.Item 可以通过 dependencies 属性,设置关联字段。当关联字段的值发生变化时,会触发校验与更新。 一种常见的场景:注册用户表单的“密码”与“确认密码”字段。“确认密码”校验依赖于“密码”字段&#x…...

408数据结构:栈、队列和数组选择题做题笔记
408数据结构 第一章 绪论 第二章 线性表 绪论、线性表选择题做题笔记 第三章 栈、队列和数组 栈、队列和数组选择题做题笔记 文章目录 408数据结构前言 一、队列二、栈和队列的应用总结 前言 本篇文章为针对王道25数据结构课后习题的栈、队列和数组的做题笔记,后续…...

sql工具!好用!爱用!
SQLynx的界面设计简洁明了,操作逻辑清晰易懂,没有复杂的图标和按钮,想对哪部分操作就在哪里点击右键,即使你是数据库小白也能轻松上手。 尽管SQLynx是一款免费的工具,但是它的功能却丝毫不逊色于其他付费产品ÿ…...

嵌入式驱动开发详解3(pinctrl和gpio子系统)
文章目录 前言pinctrl子系统pin引脚配置pinctrl驱动详解 gpio子系统gpio属性配置gpio子系统驱动gpio子系统API函数与gpio子系统相关的of函数 pinctrl和gpio子系统的使用设备树配置驱动层部分用户层部分 前言 如果不用pinctrl和gpio子系统的话,我们开发驱动时需要先…...

【C++】IO库(一):IO类
IO 库 C 不直接处理输入输出,而是通过定义一族定义在标准库当中的类型来处理IO。 8.1 IO 类 为了支持不同种类的 IO 处理操作,除了 istream 和 ostream 之外,标准库还定义了其它 IO 类型。这些类型分别定义在三个独立的头文件当中…...

uniapp介入极光推送教程 超级详细
直接按照下面教程操作 一步一步来 很快就能 完成 下面的文章非常详细 ,我就不班门弄斧了 直接上原文链接 https://blog.csdn.net/weixin_52830464/article/details/143823231...

阿里云整理(一)
阿里云整理 1. 介绍规模 2. 专业名词2.1 专有网络VPC2.2 安全组SG2.3 云服务器ECS2.4 资源组2.5 部署集2.5 web测试 1. 介绍 阿里云是一家提供云计算和人工智能服务的科技公司,成立于2009年,总部位于杭州。它为全球客户提供全方位的云服务ÿ…...

论文笔记 网络安全图谱以及溯源算法
本文提出了一种网络攻击溯源框架,以及一种网络安全知识图谱,该图由六个部分组成,G <H,V,A,E,L,S,R>。 1|11.知识图 网络知识图由六个部分组成,…...

室内定位论文速递(11.23-11.25)
多传感器姿态估计的Delta滤波器和卡尔曼滤波器设计在球形移动测绘系统中的应用 关键词 球形机器人;姿态估计;传感器融合;卡尔曼滤波器;Delta滤波器;移动测绘;LiDAR 研究问题 球形移动测绘系统中的惯性姿态估计过滤技术尚未得到充分研究。由于其内在的滚动运动,该系统…...

英伟达推出了全新的小型语言模型家族——Hymba 1.5B
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

云网络基础- TCP/IP 协议
文章目录 典型服务模式TCP/IP 协议设置和查看IPIP地址的分类:IP地址组成: 网络位主机位组成克隆:产生一台新的虚拟机win2008 典型服务模式 • C/S,Client/Server架构 – 由服务器提供资源或某种功能 – 客户机使用资源或功能 TCP/IP 协议 • TCP/IP是最广泛支持的通信协议集合…...

android 音效可视化--Visualizer
Visualizer 是使应用程序能够检索当前播放音频的一部分以进行可视化。它不是录音接口,仅返回部分低质量的音频内容。但是,为了保护某些音频数据的隐私,使用 Visualizer 需要 android.permission.RECORD_AUDIO权限。传递给构造函数的音频会话 …...

Python人工智能项目报告
一、实践概述 1、实践计划和目的 在现代社会,计算机技术已成为支撑社会发展的核心力量,渗透到生活的各个领域,应关注人类福祉,确保自己的工作成果能够造福社会,同时维护安全、健康的自然环境,设计出具有包…...

DockerFile 构建基础镜像
1.准备东西 DockerFile 文件 以及安装docker环境 文件内容如下: # 使用Alpine Linux作为基础镜像 FROM --platformlinux/amd64 nginx:1.27.2-alpine # 维护者信息 LABEL maintainer"xu_yhao163.com" ENV LANG en_US.UTF-8 ENV LANGUAGE en_US:en ENV …...