当前位置: 首页 > news >正文

华为仓颉编程环境搭建

1、仓颉介绍

摘自华为官方:仓颉编程语言作为一款面向全场景应用开发的现代编程语言,通过现代语言特性的集成、全方位的编译优化和运行时实现、以及开箱即用的 IDE 工具链支持,为开发者打造友好开发体验和卓越程序性能。
其具体特性表现为:【高效编程】、【安全可靠】、【轻松并发】、【卓越性能】等
除此之外,仓颉还支持面向应用开发的一系列工具链,包括语言服务(高亮、联想)、调试(跨语言调试、线程级可视化调试)、静态检查、性能分析、包管理、文档生成、Mock 工具、测试框架、覆盖率工具、Fuzz 工具以及智能辅助编程工具,进一步提升软件开发体验以及效率。
简单说:仓颉语言简单、高校、性能牛、遥遥领先~

2、环境搭建

废话不多说,直接切入正题:华为为仓颉开发者提供仓颉编译器和IDE插件。

2.1、仓颉编译器安装

仓颉编译器提供了Windows版本,Linux版本和Mac版本。这里介绍windows下的安装方式,其他方式可以参考官方。
在这里插入图片描述
下载页面:https://cangjie-lang.cn/download
在这里插入图片描述
进入到下载页面之后,可以看到基于不同操作系统的下载链接,针对自己的操作系统下载就行了(win系列没看到exe安装包)
在这里插入图片描述
下载完成
在这里插入图片描述
解压压缩包即可。这时您的设备中已经具备仓颉的编译器,进入到解压目录下
在这里插入图片描述
安装官方提示,进行操作即可
在这里插入图片描述

2.2、安装IDE

华为为开发者提供两种方式实现编辑仓颉代码:开发者在 VSCode 底座以及 Huawei DevEco Studio 底座安装仓颉插件后,实现开箱即用。
若您的电脑上两者都没有,建议先安装:
VSCode下载地址:https://code.visualstudio.com/Download
Huawei DevEco Studio下载地址:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides/software_install-0000001053582415-V2
两个软件的安装都比较简单,基本都是下一步下一步就搞定。需注意不要安装在有中文或空格的目录下,防止出现错误。

2.3、插件安装

下载插件:https://cangjie-lang.cn/download/0.53.13
在这里插入图片描述
在这里插入图片描述
使用压缩工具,解压插件
在这里插入图片描述
看到后缀为 vsix 的文件即可。
按照下图所示操作,找到要安装的插件.vsix,点击确定即可安装。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
安装完成,建议重启下VSCode,重新打开插件查看,已经安装成功
在这里插入图片描述

2.4、关联编译器

安装完插件,还需要关联已经安装的编译器,否则无法正常编译代码。若没有安装编译器,请阅读2.1章节内容。
开始安装插件,安装下面的截图操作即可
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
重启 VScode 生效。

3、仓颉第一码

3.1、创建仓颉项目工程

工程目录:
Project_name:用户输入的名称
│ └── src:代码目录
│ ├── main.cj:源码文件
│ ├── cjpm.toml:默认的 cjpm.toml 配置文件
仓颉项目工程有两种创建方式:

  • VSCode 命令面板创建,麻烦,刚刚开始学习,不建议使用,将来可以回头试试
  • 通过可视化界面创建:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    项目创建完成,并写完了main.cj的程序入口代码
    在这里插入图片描述

3.2、码一行

提供的main.cj 中,自己随便输出点内容

package demo_02main(): Int64 {println("华为仓颉")println("遥遥领先")return 0
}

3.3、编译运行

VSCode工具的右上角,有 锤子三角 图标 , 锤子 表示编译,三角 表示运行
在这里插入图片描述
在这里插入图片描述

3.4、关于编译

关于编译的更多说明,请参考官网
在这里插入图片描述
博主目前也是在摸索中,欢迎大家和一起讨论,共同进步。

相关文章:

华为仓颉编程环境搭建

1、仓颉介绍 摘自华为官方:仓颉编程语言作为一款面向全场景应用开发的现代编程语言,通过现代语言特性的集成、全方位的编译优化和运行时实现、以及开箱即用的 IDE 工具链支持,为开发者打造友好开发体验和卓越程序性能。 其具体特性表现为&am…...

UE5 Line Trace By Channel(通道线条追踪)节点

在 Unreal Engine 5 (UE5) 中,Line Trace By Channel 是一个常用于进行物理射线检测(raycasting)的节点。它会沿着一条从起点到终点的直线发射一条射线,并检测射线与世界中任何物体的碰撞。这个节点广泛应用于枪械射击、检测物体、…...

DroneCAN 最新开发进展,Andrew在Ardupilot开发者大会2024的演讲

本文是Andrew演讲的中文翻译,你可以直接观看视频了解演讲的全部内容,此演讲视频的中文版本已经发布在Ardupilot社区的Blog板块,你可以在 Arudpilot官网(https://ardupilot.org) 获取该视频: 你也可以直接通过Bilibili链…...

UDP客户端服务器通信

在这篇博客中,我们将探索 UDP(用户数据报协议) 通信,简要地说,UDP 是一种无连接、快速但不可靠的通信协议,适用于需要快速数据传输但对丢包容忍的场景,比如视频流和在线游戏。就像《我是如此相信…...

适合中小型公司的自动化测试的测试框架,OpenSourceTest

适合中小型公司的自动化测试的测试框架,OpenSourceTest 文档地址: http://docs.opensourcetest.cn/代码仓库: https://github.com/chineseluo/opensourcetest安装方式: pip3 install opensourcetest -i https://pypi.tuna.tsin…...

实现跨语言通信:Rust 和 Thrift 的最佳实践

前言 在分布式系统中,服务之间高效且安全的通信至关重要。Apache Thrift 是一个被广泛应用的跨语言 RPC(远程过程调用)框架,它支持多种编程语言,包括 Rust。Rust 以其卓越的性能和内存安全保障,成为越来越…...

js判断空对象

1. 使用 Object.keys() 方法 Object.keys(obj) 方法返回一个包含对象可枚举属性名称的数组。如果返回的数组长度为 0,表示对象为空。 const isEmpty (obj) > Object.keys(obj).length 0;// 示例 const emptyObject {}; const nonEmptyObject { key: value …...

visionpro官方示例分析(一) 模板匹配工具 缺陷检测工具

1.需求:找出图像中的这个图形。 2.步骤 使用CogPMAlignTool工具,该工具是模板匹配工具,见名知意,所谓模板匹配工具就是说先使用该工具对一张图像建立模板,然后用这个模板在其他图像上进行匹配,匹配上了就说…...

PyCharm中Python项目打包并运行到服务器的简明指南

目录 一、准备工作 二、创建并设置Python项目 创建新项目 配置项目依赖 安装PyInstaller 三、打包项目 打包为可执行文件 另一种打包方式(使用setup.py) 四、配置服务器环境 五、上传可执行文件到服务器 六、在服务器上运行项目 配置SSH解释…...

cocos creator 3.8 合成大西瓜Demo 11

界面上的Node节点: 背景 警戒线 三面墙 初始位置节点 水果容器 先分组吧,墙 地板 水果 创建预制体 先挂一个脚本 刚体碰撞器先弄上再说 import { _decorator, Component, Node } from cc; const { ccclass, property } _decorator;ccclass(FruitData) e…...

Vue前端开发-动态插槽

不仅父组件可以通过插槽方式访问并控制子组件传入的数据,而且可以控制传入父组件时插槽的名称,从而使不同的插槽根据名称的不同,使用场景也不同,例如在一个小区详细页中,可以根据小区类型,调用不同名称的详…...

使用easyexcel导出复杂模板,同时使用bean,map,list填充

背景 在使用easyexcel导出时,如果遇到一个模板中同时存在 一部分是实体类中的字段,另外部分是列表的字段,需要特殊处理一下,比如下面的模板: 这里面 user, addr 是实体类(或者map&#xff09…...

最大值(Java Python JS C++ C )

题目描述 给定一组整数(非负),重排顺序后输出一个最大的整数。 示例1 输入:[10,9] 输出:910 说明:输出结果可能非常大,所以你需要返回一个字符串而不是整数。 输入描述 数字组合 输出描述 最大的整数 示例1 输入 10 9输出 910解题思路 题目要求 是:给定一…...

17.5k Star,ThingsBoard 一款开源、免费、功能全面的物联网 IoT 平台 -慧知开源充电桩平台

项目介绍 ThingsBoard是一个开源、免费、功能全面、灵活易用的物联网(IoT)平台,专注于数据收集、处理、可视化以及设备管理。它提供了一个全面的解决方案,用于构建和管理物联网应用。支持从各种设备收集数据,通过内置…...

《C++ 与神经网络:自动微分在反向传播中的高效实现之道》

在深度学习蓬勃发展的今天,神经网络成为了众多领域的核心技术驱动力。而反向传播算法作为训练神经网络的关键手段,其背后的自动微分技术的高效实现尤为重要,特别是在 C 这样追求性能与内存控制极致的编程语言环境下。 神经网络通过大量的参数…...

【CSS】设置文本超出N行省略

文章目录 基本使用 这种方法主要是针对Webkit浏览器,因此可能在一些非Chrome浏览器中不适用。 基本使用 例如:设置文本超出两行显示省略号。 核心代码: .ellipsis-multiline {display: -webkit-box; -webkit-box-orient: vertical; /* 设置…...

open-instruct - 训练开放式指令跟随语言模型

文章目录 关于 open-instruct设置训练微调偏好调整RLVR 污染检查开发中仓库结构 致谢 关于 open-instruct github : https://github.com/allenai/open-instruct 这个仓库是我们对在公共数据集上对流行的预训练语言模型进行指令微调的开放努力。我们发布这个仓库,并…...

DI依赖注入详解

DI依赖注入 声明了一个成员变量(对象)之后,在该对象上面加上注解AutoWired注解,那么在程序运行时,该对象自动在IOC容器中寻找对应的bean对象,并且将其赋值给成员变量,完成依赖注入。 AutoWire…...

TDengine在debian安装

参考官网文档&#xff1a; 官网安装文档链接 从列表中下载获得 Deb 安装包&#xff1b; TDengine-server-3.3.4.3-Linux-x64.deb (61 M) 进入到安装包所在目录&#xff0c;执行如下的安装命令&#xff1a; sudo dpkg -i TDengine-server-<version>-Linux-x64.debNOTE 当…...

【C#设计模式(15)——命令模式(Command Pattern)】

前言 命令模式的关键通过将请求封装成一个对象&#xff0c;使命令的发送者和接收者解耦。这种方式能更方便地添加新的命令&#xff0c;如执行命令的排队、延迟、撤销和重做等操作。 代码 #region 基础的命令模式 //命令&#xff08;抽象类&#xff09; public abstract class …...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...