当前位置: 首页 > news >正文

深度学习:GPT-2的MindSpore实践

GPT-2简介

GPT-2是一个由OpenAI于2019年提出的自回归语言模型。与GPT-1相比,仍基于Transformer Decoder架构,但是做出了一定改进。

模型规格上:

GPT-1有117M参数,为下游微调任务提供预训练模型。

GPT-2显著增加了模型规模,提供了多种模型,如:124M、355M、774M和1.5B

数据集大小上:

GPT-2训练于数据量约有45GB的WebText数据集。数据集的数据收集于Reddit中的网络文章。

模型架构上:

GPT-2维持了GPT-1的Decoder-only架构,但是讲Decoder Block增加至48层,采用了更深层的注意力机制和更大的前馈网络维度并改进了正则化。同时,GPT-2加入了可学习的位置编码。将Layer Norm前置于模型获得输入后。一个额外的Layer Norm被添加于最后一个自注意力Block后。

参数初始化上:

参数初始化上,使用了一个Special Scaled Initialization。Special Scaled Initialization是Xavier Normalization的一种变体,使用了额外的缩放。将因子n调整为残差连接的次数,也就是block数量的两倍。

任务设定

一般语言模型的训练目标设置为:P(output | input)

但是,GPT-2通过同样的无监督模型来完成多个既定任务,学习目标变为:P(output | input, task)

这种修改被称为任务设定。对于同样的输入,模型应该根据不同的任务输出不同的结果。

翻译任务

文本总结

其他下游任务:基于zero-shot或few-shot的文本生成、文本总结、文本翻译、QA问答、文本分类。

基于MindSpore的GPT-2实践

复习Masked Multi Self-Attention

#安装mindnlp 0.4.0套件
!pip install mindnlp==0.4.0
!pip uninstall soundfile -y
!pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.3.1/MindSpore/unified/aarch64/mindspore-2.3.1-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

假设一个批大小为1,序列长度为10,特征维度为768的输入

 # GPT-2 Masked Self-Attention# assume an input of self-attention x, input_dim is 768
batch_size, seq_len, embed_dim = 1, 10, 768x = Tensor(np.random.randn(batch_size, seq_len, embed_dim), mindspore.float32)
x.shape

将输入复制三份作为Q、K、V。

import mindspore.ops as ops
from mindnlp.transformers.ms_utils import Conv1D# an input will be multipled by three matrixs Wq, Wk, Wv
# concat the three matrixs, you will get a matrix of (768, 768*3)
# x matmul matrix, the output would be (batch_size, seq_len, 768*3)
c_attn = Conv1D(3 * embed_dim, embed_dim)
output = c_attn(x)
# split the output into q, k, v
query, key, value = ops.Split(axis=2, output_num=3)(output)
query.shape, key.shape, value.shape

 将注意力分头

# split self-attention into multi_head attention
def split_heads(tensor, num_heads, attn_head_size):'''Spilit hidden_size dim into attn_head_size and num_headsArgs:tensor: tensor to splitnum_heads: how many heads to splitattn_head_size: hidden_size of each headReturn:Multi-Head tensor'''new_shape = tensor.shape[:-1] + (num_heads, attn_head_size)tensor = tensor.view(new_shape)return ops.transpose(tensor, (0, 2, 1, 3))num_heads = 12
attn_head_size = embed_dim // num_headsquery = split_heads(query, num_heads, attn_head_size)
key = split_heads(key, num_heads, attn_head_size)
value = split_heads(value, num_heads, attn_head_size)query.shape, key.shape, value.shape

将Q、K相乘,得到注意力分数

# get self-attention score
attn_weights = ops.matmul(query, key.swapaxes(-1, -2))
attn_weights.shape

将注意力分数加上掩码,防止模型看见“未来”的数据

# get mask attn_weighs
max_positions = seq_len
# create a mask matrix
bias = Tensor(np.tril(np.ones((max_positions, max_positions))).reshape((1, 1, max_positions, max_positions)), mindspore.bool_)# apply Mask Matrix to get masked scores
# this normalization helps stabilize gradients 
# and is common in scaled dot-product attention mechanisms
attn_weights = attn_weights / ops.sqrt(ops.scalar_to_tensor(value.shape[-1]))query_length, key_length = query.shape[-2], key.shape[-2]
causal_mask = bias[:, :, key_length - query_length: key_length, :key_length].bool()
mask_value = Tensor(np.finfo(np.float32).min, dtype=attn_weights.dtype)
attn_weights = ops.where(causal_mask, attn_weights, mask_value)

 经过SoftMax层,得到掩码分数

# get attn scores
attn_weights = ops.softmax(attn_weights, axis=-1)

掩码分数与V相乘,得到注意力输出

# get output of Masked Self-Attention
attn_output = ops.matmul(attn_weights, value)
attn_output.shape

 将头合并

# merge multi heads
def merge_heads(tensor, num_heads, attn_head_size):'''Merge attn_head_size dim and num_attn_heads dim to hidden_size'''tensor = ops.transpose(tensor, (0, 2, 1, 3))new_shape = tensor.shape[:-2] + (num_heads * attn_head_size, )return tensor.view(new_shape)attn_output = merge_heads(attn_output, num_heads, attn_head_size)
attn_output.shape

将输出与Wv相乘,得到最终输出

# project Attnetion results with Wv
projection = Conv1D(embed_dim, embed_dim)
attn_output = projection(attn_output)
attn_output.shape

基于MindSpore的GPT2文本摘要

基于GPT-2实现一个简单的文本摘要。

# 数据加载与预处理
from mindnlp.utils import http_get# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')from mindspore.dataset import TextFileDataset# load dataset
dataset = TextFileDataset(str(path), shuffle =False)
dataset.get_dataset_size()mini_dataset, _ = dataset.split([0.001, 0.999], randomize=False)
train_dataset, test_dataset = mini_dataset.split([0.9, 0.1], randomize=False)import json
import numpy as np
def process_dataset(dataset, tokenizer, batch_size=4, max_seq_len=1024, shuffle=False):'''数据预处理:原始数据格式:article:[CLS] article_context [SEP]summary:[CLS] summary_context [SEP]预处理后的数据格式:[CLS] article_context [SEP] summary_context [SEP]'''def read_map(text):'''sub function to change the form of data'''data = json.loads(text.tobytes())print(data)return np.array(data['article']), np.array(data['summarization'])def merge_and_pad(article, summary):# tokenization, pad to max_seq_length, only article will be truncatedtokenized = tokenizer(text=article, text_pari=summary, padding='max_length', truncation='only_first', max_length=max_seq_len)# Returns tokenized input IDs for both the input (input_ids) and the labels.return tokenized['input_ids'], tokenized['input_ids']# 'text': Input column to process.# ['article', 'summary']: Names of the output columns after processing.dataset = dataset.map(read_map, output_columns=['article', 'summary'])dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])dataset = dataset.batch(batch_size)if shuffle:dataset = dataset.shuffle(batch_size)return datasetfrom mindnlp.transformers import BertTokenizer# Load BERT-base-Chinese tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# load train dataset
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=1)# model architecture of GPT2ForSummarization
from mindnlp.transformers import GPT2LMHeadModelclass GPT2ForSummarization(GPT2LMHeadModel):def forward(self, input_ids=None, attention_mask=None, labels=None):outputs = super().forward(input_ids=input_ids, attention_mask=attention_mask)shift_logits = outputs.logits[..., :-1, :]shift_labels = labels[..., 1:]loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)return (loss, )num_epochs = 1
warmup_steps = 100
lr = 1.5e-4
max_grad_norm = 1.0
num_training_steps = num_epochs * train_dataset.get_dataset_size()from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModelconfig = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)from mindnlp.engine import TrainingArgumentstraining_args = TrainingArguments(output_dir="gpt2_summarization",save_steps=train_dataset.get_dataset_size(),save_total_limit=3,logging_steps=1000,max_steps=num_training_steps,learning_rate=lr,max_grad_norm=max_grad_norm,warmup_steps=warmup_steps)from mindnlp.engine import Trainertrainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,
)trainer.train()def process_test_dataset(test_dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):def read_map(text):data = json.loads(text.tobytes())return np.array(data['article']), np.array(data['summarization'])def pad(article):tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)return tokenized['input_ids']test_dataset = test_dataset.map(read_map, output_columns=['article', 'summary'])test_dataset = test_dataset.map(pad, 'article', ['input_ids'])test_dataset = test_dataset.batch(batch_size)return test_datasettokenizer_test = BertTokenizer.from_pretrained('bert-base-chinese')batched_test_dataset = process_test_dataset(test_dataset, tokenizer_test, batch_size=1)model = GPT2LMHeadModel.from_pretrained('./gpt2_summarization/checkpoint-45', config=config)model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in batched_test_dataset.create_tuple_iterator():output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)output_text = tokenizer.decode(output_ids[0].tolist())print('input', tokenizer.decode(input_ids[0].tolist()))print()print(output_text)i += 1if i == 1:break

相关文章:

深度学习:GPT-2的MindSpore实践

GPT-2简介 GPT-2是一个由OpenAI于2019年提出的自回归语言模型。与GPT-1相比,仍基于Transformer Decoder架构,但是做出了一定改进。 模型规格上: GPT-1有117M参数,为下游微调任务提供预训练模型。 GPT-2显著增加了模型规模&…...

【Oracle11g SQL详解】ORDER BY 子句的排序规则与应用

ORDER BY 子句的排序规则与应用 在 Oracle 11g 中,ORDER BY 子句用于对查询结果进行排序。通过使用 ORDER BY,可以使返回的数据按照指定的列或表达式以升序或降序排列,便于数据的分析和呈现。本文将详细讲解 ORDER BY 子句的规则及其常见应用…...

YOLO系列论文综述(从YOLOv1到YOLOv11)【第15篇(完结):讨论和未来展望】

总结 0 前言1 YOLO与人工通用智能(AGI)2 YOLO作为“能够行动的神经网络”3 具身人工智能(EAI)4 边缘设备上的YOLO5 评估统计指标的挑战6 YOLO与环境影响 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YO…...

Java设计模式 —— 【创建型模式】原型模式(浅拷贝、深拷贝)详解

文章目录 前言原型模式一、浅拷贝1、案例2、引用数据类型 二、深拷贝1、重写clone()方法2、序列化 总结 前言 先看一下传统的对象克隆方式: 原型类: public class Student {private String name;public Student(String name) {this.name name;}publi…...

SciAssess——评估大语言模型在科学文献处理中关于模型的记忆、理解和分析能力的基准

概述 大规模语言模型(如 Llama、Gemini 和 GPT-4)的最新进展因其卓越的自然语言理解和生成能力而备受关注。对这些模型进行评估对于确定其局限性和潜力以及促进进一步的技术进步非常重要。为此,人们提出了一些特定的基准来评估大规模语言模型…...

SQLModel与FastAPI结合:构建用户增删改查接口

SQLModel简介 SQLModel是一个现代化的Python库,旨在简化与数据库的交互。它结合了Pydantic和SQLAlchemy的优势,使得定义数据模型、进行数据验证和与数据库交互变得更加直观和高效。SQLModel由FastAPI的创始人Sebastin Ramrez开发,专为与FastA…...

【RISC-V CPU debug 专栏 2.3 -- Run Control】

文章目录 Run ControlHart 运行控制状态位状态信号操作流程时间与实现注意事项Run Control 在 RISC-V 调试架构中,运行控制模块通过管理多个状态位来对硬件线程(harts)的执行进行调节和控制。这些状态位帮助调试器请求暂停或恢复 harts,并在 hart 复位时进行控制。以下是运…...

探索 IntelliJ IDEA 中 Spring Boot 运行配置

前言 IntelliJ IDEA 作为一款功能强大的集成开发环境(IDE),为 Spring Boot 应用提供了丰富的运行配置选项,定义了如何在 IntelliJ IDEA 中运行 Spring Boot 应用程序,当从主类文件运行应用程序时,IDE 将创建…...

三除数枚举

给你一个整数 n 。如果 n 恰好有三个正除数 ,返回 true ;否则,返回 false 。 如果存在整数 k ,满足 n k * m ,那么整数 m 就是 n 的一个 除数 。 输入:n 4 输出:true 解释:4 有三…...

【051】基于51单片机温度计【Proteus仿真+Keil程序+报告+原理图】

☆、设计硬件组成:51单片机最小系统DS18B20温度传感器LCD1602液晶显示按键设置蜂鸣器LED灯。 1、本设计采用STC89C51/52、AT89C51/52、AT89S51/52作为主控芯片; 2、采用DS18B20温度传感器测量温度,并且通过LCD1602实时显示温度;…...

[Java]微服务之服务保护

雪崩问题 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩 雪崩问题产生的原因是什么? 微服务相互调用,服务提供者出现故障或阻塞。服务调用者没有做好异常处理,导致自身故障。调用链中的所有服…...

自动驾驶目标检测融合全貌

1、early fusion 早期融合,特点用到几何空间转换3d到2d或者2d到3d的转换,用像素找点云或者用点云找像素。 2、deep fusion 深度融合,也是特征级别融合,也叫多模态融合,如bevfusion范式 3、late fusion 晚融合&#x…...

消息框(Message Box)的测试方法和测试用例

我来帮你了解消息框(Message Box)的测试方法和测试用例的编写。 我已经创建了一个测试用例示例,让我为你解释消息框测试的主要方面: 测试维度: 功能性测试:验证消息框的基本功能是否正常样式测试:确认不同类型消息框…...

Ubuntu 包管理

APT&dpkg 查看已安装包 查看所有已经安装的包 dpkg -l 查找包 apt search <package_name>搜索软件包列表&#xff0c;找到与搜索关键字匹配的包 dpkg与grep结合查找特定的包 dpkg -s <package>&#xff1a;查看某个安装包的详细信息 安装包 apt安装命令 更新…...

[Ubuntu] linux之Ubuntu18.04的下载及在虚拟机中详细安装过程(附有下载链接)

前言 ubuntu 链接&#xff1a;https://pan.quark.cn/s/283509d0d36e 提取码&#xff1a;dfT1 链接失效&#xff08;可能被官方和谐&#xff09;可评论或私信我重发 下载压缩包后解压 &#xff01;&#xff01;安装路径不要有中文 下载后解压得到.iso文件&#xff0c;不要放在…...

ffmpeg安装(windows)

ffmpeg安装-windows 前言ffmpeg安装路径安装说明 前言 ffmpeg的安装也是开箱即用的,并没有小码哥说的那么难 ffmpeg安装路径 这就下载好了! 安装说明 将上面的bin目录加入到环境变量,然后在cmd中测试一下: C:\Users\12114\Desktop\test\TaskmgrPlayer\x64\Debug>ffmpe…...

服务器数据恢复—raid6阵列硬盘被误重组为raid5阵列的数据恢复案例

服务器存储数据恢复环境&#xff1a; 存储中有一组由12块硬盘组建的RAID6阵列&#xff0c;上层linux操作系统EXT3文件系统&#xff0c;该存储划分3个LUN。 服务器存储故障&分析&#xff1a; 存储中RAID6阵列不可用。为了抢救数据&#xff0c;运维人员使用原始RAID中的部分…...

linux内核编译启动总结

linux kernel 编译 升级汇总 写在前面内核编译获取kernel代码开始前的准备工作 编译过程1\.解压与净化将下载好的linux内核解压至/usr/src 2\. 得到源代码后,将其净化3\. 配置要进行编译的内核4.编译内核. &#xff08;15分钟&#xff09;5.编译模块.方法1:方法2&#xff1a; 6…...

Android Studio的AI工具插件使用介绍

Android Studio的AI工具插件使用介绍 一、前言 Android Studio 的 AI 工具插件具有诸多重要作用&#xff0c;以下是一些常见的方面&#xff1a; 代码生成与自动补全 代码优化与重构 代码解读 学习与知识获取 智能搜索与资源推荐实际使用中可以添加注释&#xff0c;解读某段代…...

本地部署 WireGuard 无需公网 IP 实现异地组网

WireGuard 是一个高性能、极简且易于配置的开源虚拟组网协议。使用路由侠内网穿透使其相互通讯。 第一步&#xff0c;服务端&#xff08;假设为公司电脑&#xff09;和客户端&#xff08;假设为公司外的电脑&#xff09;安装部署 WireGuard 1&#xff0c;点此下载&#xff08;…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...