当前位置: 首页 > news >正文

Leetcode经典题5--轮转数组

题目描述

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

输入输出示例 :

输入: nums = [1,2,3,4,5,6,7], k = 3

输出: [5,6,7,1,2,3,4]

解释:

向右轮转 1 步: [7,1,2,3,4,5,6]

向右轮转 2 步: [6,7,1,2,3,4,5]

向右轮转 3 步: [5,6,7,1,2,3,4]

解题方案

模除操作

方式一:使用额外的数组

算法思想

使用额外的数组来将每个元素放至正确的位置。用 n 表示数组的长度,我们遍历原数组,将原数组下标为 i 的元素放至新数组下标为 (i+k) mod n 的位置,最后将新数组拷贝至原数组即可

实现代码

class Solution {public void rotate(int[] nums, int k) {//获取数组长度int n = nums.length;//创建一个新数组int[] newArr = new int[n];//遍历原数组,将数组放到正确的位置for (int i = 0; i < n; ++i) {newArr[(i + k) % n] = nums[i];}System.arraycopy(newArr, 0, nums, 0, n);}
}

复杂度分析

  • 时间复杂度: O(n),其中 n 为数组的长度。
  • 空间复杂度: O(n)。
方法二:环状替换

算法思想:

为了防止元素覆盖的问题,因此,从另一个角度,我们可以将被替换的元素保存在变量 temp 中,从而避免了额外数组的开销。

我们用下面的例子更具体地说明这个过程:

nums = [1, 2, 3, 4, 5, 6]

k = 2

 

  • 我们从位置 0 开始,最初令 temp=nums[0]。
  • 根据规则,位置 0 的元素会放至 (0+k) mod n 的位置,令 x=(0+k) mod n,此时交换 temp 和 nums[x],完成位置 x 的更新。
  • 然后,我们考察位置 x,并交换 temp 和 nums [(x+k) mod n],从而完成下一个位置的更新。不断进行上述过程,直至回到初始位置 0。每次都考察要更新的位置

容易发现,当回到初始位置 0 时,有些数字可能还没有遍历到,此时我们应该从下一个数字开始重复的过程

怎么才算遍历结束呢?

我们不妨先考虑这样一个问题:从 0 开始不断遍历,最终回到起点 0 的过程中,我们遍历了多少个元素?

由于最终回到了起点,故该过程恰好走了整数数量的圈,不妨设为 a 圈;

再设该过程总共遍历了 b 个元素。

我们用总元素数b 除以 每圈遍历的元素个数n/k 会得到总共遍历的圈数a

因此,我们有 an=bk,即 an 一定为 n,k 的公倍数。又因为我们在第一次回到起点时就结束,因此 a 要尽可能小,故 an 就是 n,k 的最小公倍数 lcm(n,k),因此 b 就为 lcm(n,k)/k。

这说明单次遍历会访问到 lcm(n,k)/k 个元素。为了访问到所有的元素,我们需要进行遍历的次数为

其中 gcd 指的是最大公约数。

实现代码

使用单独的变量 count 跟踪当前已经访问的元素数量,当 count=n 时,结束遍历过程。

class Solution {public void rotate(int[] nums, int k) {//数组长度int n = nums.length;k = k % n;//遍历次数 k和n的最大公约数int count = gcd(k, n);//循环遍历for (int start = 0; start < count; ++start) {//当前遍历的数组下标int current = start;//开始时的数组元素int prev = nums[start];do {//将要更新的数组下标int next = (current + k) % n;//将被覆盖的数组值赋给tempint temp = nums[next];//更新nums[next] = prev;prev = temp;current = next;} while (start != current);}}public int gcd(int x, int y) {return y > 0 ? gcd(y, x % y) : x;}
}

复杂度分析

时间复杂度:O(n),其中 n 为数组的长度。每个元素只会被遍历一次。

空间复杂度:O(1)。我们只需常数空间存放若干变量。

方法三:数组翻转

算法思想

该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 k mod n 个元素会移动至数组头部,其余元素向后移动 k mod n 个位置。

实现步骤

  • 我们可以先将所有元素翻转,这样尾部的 k mod n 个元素就被移至数组头部,
  • 然后我们再翻转 [0,kmodn−1] 区间的元素和 [kmodn,n−1] 区间的元素即能得到最后的答案。

我们以 n=7,k=3 为例进行如下展示:

实现代码

class Solution {public void rotate(int[] nums, int k) {//确定分开反转的位置k %= nums.length;//反转整个数组reverse(nums, 0, nums.length - 1);//反转前一半reverse(nums, 0, k - 1);//反转后一半reverse(nums, k, nums.length - 1);}//数组翻转public void reverse(int[] nums, int start, int end) {while (start < end) {int temp = nums[start];nums[start] = nums[end];nums[end] = temp;start += 1;end -= 1;}}
}

复杂度分析

时间复杂度:O(n),其中 n 为数组的长度。每个元素被翻转两次,一共 n 个元素,因此总时间复杂度为 O(2n)=O(n)。

空间复杂度:O(1)。

欢迎大家点赞,评论加关注呦

相关文章:

Leetcode经典题5--轮转数组

题目描述 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 输入输出示例 &#xff1a; 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右…...

C++的一些经典算法

以下是C的一些经典算法&#xff1a; 一、排序算法 冒泡排序&#xff08;Bubble Sort&#xff09; 原理&#xff1a; 它重复地走访过要排序的数列&#xff0c;一次比较两个元素&#xff0c;如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换…...

Windows环境中Python脚本开机自启动及其监控自启动

1 开机自启动 Windows 10/Windows Server 201X具有一个名为“启动”的已知文件夹&#xff0c;系统每次启动开始自动运行应用程序、快捷方式和脚本时都会检查该文件夹&#xff0c;而无需额外配置。 要在Windows启动时运行脚本&#xff0c;先使用WindowsR快捷键打开“运行”对话…...

XML 语言随笔

XML的含义 XML&#xff08;eXtensible Markup Language&#xff0c;可扩展标记语言&#xff09;是一种用于存储和传输数据的标记语言。XML与HTML&#xff08;HyperText Markup Language&#xff0c;超文本标记语言&#xff09;类似&#xff0c;但XML的设计目的是描述数据&…...

E卷-分割数组的最大差值

分割数组的最大差值 问题描述 给定一个由若干整数组成的数组 n u m s nums nums,可以在数组内的任意位置进行分割,将该数组分割成两个非空子数组(即左数组和右数组)。分别对子数组求和得到两个值,然后计算这两个值的差值。请输出所有分割方案中,差值的最大值。 输入格…...

基于SpringBoot校园台球厅人员与设备管理系统设计与实现

1.1课题背景与意义 在Internet高速发展的今天&#xff0c;计算机的应用几乎完全覆盖我们生活的各个领域&#xff0c;互联网在经济&#xff0c;生活等方面有着举足轻重的地位&#xff0c;成为人们资源共享&#xff0c;信息快速传递的重要渠道。在中国&#xff0c;网上管理的兴起…...

异步FIFO的实现

异步FIFO是verilog中常见的设计&#xff0c;通常用于不同时钟域下的数据同步。 在实现 FIFO 时&#xff0c;无论是同步 FIFO 还是异步 FIFO &#xff0c;通常会通过双口 RAM &#xff08; Dual Port RAM &#xff09;并添加一些必要的逻辑来实现。双口 RAM的设计如下&#xff1…...

关于找工作的一些感悟

2024年找工作可以说难度十分艰巨&#xff0c;尤其是年底&#xff0c;除了外包公司还在不停的招聘以外&#xff0c;自研的公司基本很少在招聘了。今年有一个很大的感受就是投递了简历可能都没有几个人回复&#xff0c;即使有人回复百分之八十都是拒绝的&#xff0c;拒绝的理由一…...

docker 相关问题记录

docker mysql 一直重启解决办法&#xff08;断电或者重启&#xff09; 一直重启。。因为是内部开发&#xff0c;也没有备份最新的。所以不能删了重来。 方法&#xff1a; docker logs mysql5.7 看到错误跟innodb有关。 具体原因可以参考 http://acuilab.com/articles/2019/1…...

Devops 实践

Devops 实践 基本概念jenkins实践安装jenkins仓库环境准备代码环境准备第一次构建持续集成持续部署集成插件 优秀实践心得体会 参考 摘要&#xff1a;本文首先将介绍一些基本概念&#xff0c;包括Devops&#xff0c;CI/CD等&#xff0c;然后基于知名开源CI/CD工具jenkins进行实…...

MySQL 索引(B+树)详解

MySQL 索引&#xff08;B树&#xff09;详解 MySQL逻辑架构对比InnoDB与MyISAM存储结构存储空间可移植性、备份及恢复事务支持AUTO_INCREMENT表锁差异全文索引表主键表的具体行数CRUD操作外键 sql优化简介什么情况下进行sql优化sql语句执行过程sql优化就是优化索引 索引索引的优…...

医疗系统国产数据库高质量发展路径探析

信息工程人员操作数据库 一、国外数据库在医疗系统中的困境 &#xff08;一&#xff09;数据分散与难以整合 在美国&#xff0c;分散式医疗服务成为癌症研究数据库优化的巨大障碍。患者先在社区接受肿瘤科医生常规检查&#xff0c;再到学术医疗中心进行尖端治疗&#xff0c;然…...

微信小程序报错:http://159.75.169.224:7300不在以下 request 合法域名列表中,请参考文档

要解决此问题&#xff0c;需打开微信小程序开发者工具进行设置&#xff0c;打开详情-本地设置重新运行&#xff0c;该报错就没有啦...

智能租赁管理系统助力规范化住房租赁市场提升用户体验

内容概要 在当今的住房租赁市场中&#xff0c;智能租赁管理系统应运而生&#xff0c;为房东和租客带来了前所未有的便利。这套系统就像一位全能助手&#xff0c;将租赁信息、监管机制以及在线签约功能集成在一起&#xff0c;让整个过程变得流畅而高效。换句话说&#xff0c;您…...

MicroBlaze软核开发(一):Hello World

实现功能&#xff1a;使用 MicroBlaze软核 串口打印 Hello World Vivado版本&#xff1a;2018.3 目录 MicroBlaze介绍 vivado部分&#xff1a; 一、新建工程 二、配置MicroBlaze 三、添加Uart串口IP 四、生成HDL文件编译 SDK部分&#xff1a; 一、导出硬件启动SDK 二、…...

跟着问题学15——GRU网络结构详解及代码实战

1 RNN的缺陷——长期依赖的问题 &#xff08;The Problem of Long-Term Dependencies&#xff09; 前面一节我们学习了RNN神经网络&#xff0c;它可以用来处理序列型的数据&#xff0c;比如一段文字&#xff0c;视频等等。RNN网络的基本单元如下图所示&#xff0c;可以将前面的…...

【uniapp】swiper切换时,v-for重新渲染页面导致文字在视觉上的拉扯问题

问题描述 先用v-for渲染了几个列表&#xff0c;但这几个列表是占同一个位置的&#xff0c;只是通过切换swiper来显示哪个列表显示&#xff0c;也就是为了优化页面切换时候&#xff0c;没有根据swiper的current再更新v-for的数据&#xff0c;但现在就有个问题&#xff0c;怎么隐…...

【Android】Compose初识

文章目录 1.Compose是什么2.Compose优势3.可组合函数4.布局5.配置布局6.Material Design7.列表与动画8.声明式UI9.组合10.重组 1.Compose是什么 Jetpack Compose是谷歌开发的一个现代的、声明式的UI工具包&#xff0c;用于构建原生的Android应用程序界面。它简化了创建复杂用户…...

前端工程化面试题(二)

前端模块化标准 CJS、ESM 和 UMD 的区别 CJS&#xff08;CommonJS&#xff09;、ESM&#xff08;ESModule&#xff09;和UMD&#xff08;Universal Module Definition&#xff09;是前端模块化标准的三种主要形式&#xff0c;它们各自有不同的特点和使用场景&#xff1a; CJS&…...

以攻击者的视角进行软件安全防护

1. 前言 孙子曰&#xff1a;知彼知己者&#xff0c;百战不殆&#xff1b;不知彼而知己&#xff0c;一胜一负&#xff0c;不知彼&#xff0c;不知己&#xff0c;每战必殆。 摘自《 孙子兵法谋攻篇 》在2500 年前的那个波澜壮阔的春秋战国时代&#xff0c;孙子兵法的这段话&…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...