当前位置: 首页 > news >正文

BA和CS算法中的Levy飞行策略

        Levy飞行策略通过模拟自然界中动物的长距离迁徙行为,指导粒子进行更大范围的搜索,有助于算法快速找到全局最优解。它是一种具有独特优势的随机行为策略,模拟随机游走或搜索过程中的步长和方向,其步长的概率分布为重尾分布,意味着在随机行走的过程中有相对较高的概率出现大跨步。

一、BA和CS算法中的Levy飞行策略

        1. 布谷鸟搜索算法(Cuckoo Search, CS)

        布谷鸟搜索算法是一种基于自然现象的启发式优化算法,它模拟了布谷鸟寻找宿主鸟巢并寄生卵的行为。在布谷鸟搜索算法中,Levy飞行被用来模拟布谷鸟在搜索过程中的随机游走模式。通过Levy飞行,布谷鸟能够高效地探索搜索空间,从而找到更好的鸟巢位置。这种策略使得算法能够跳出局部最优解,提高全局搜索能力。可以先了解我的文章:路径规划之启发式算法之十一:布谷鸟搜索算法(Cuckoo Search,CS)-CSDN博客

        2. 蝙蝠算法(Bat Algorithm, BA)

        蝙蝠算法是一种基于蝙蝠回声定位行为的启发式优化算法。在蝙蝠算法中,Levy飞行也被用来模拟蝙蝠在搜索过程中的随机移动。蝙蝠通过调整其飞行速度和方向来探索搜索空间,并利用回声定位来感知环境中的障碍物和目标。Levy飞行的引入使得蝙蝠算法能够更好地平衡局部搜索和全局搜索,从而提高算法的搜索效率和精度。可以先了解我的文章:路径规划之启发式算法之十:蝙蝠算法(Bat Algorithm, BA)-CSDN博客

        Levy飞行策略在算法中的应用

图1 Levy飞行策略在算法中的应用

、定义

        1. Levy飞行策略

        Levy飞行策略的名称来自于莱维飞行(Levy flight),它模拟了在某些情况下生物在搜索食物或资源时的运动方式。这种策略使得个体或粒子在空间中进行随机移动,其步长和方向由莱维分布所决定。

        2. Levy分布(Lévy过程)

        莱维分布最早由法国数学家Paul Lévy于20世纪20年代提出,是一种具有重尾特性的概率分布,长尾行为使得在尾部产生极端值的概率较高。其概率密度函数满足幂律关系,意味着相对较大的步长事件(即远距离的移动)比正态分布或其他常见分布更加频繁地发生。与传统分布相比,莱维分布无法定义方差,且不存在矩,这使得它在统计特性上与正态分布等传统分布有着本质的区别。

        Lévy分布的定义:一个随机过程X_{t},如果满足三个条件,即X_{0}=0、增量平稳独立、以及连续时刻处于概率1的状态时处处右连续,那么它就是一个Lévy过程。数学表达如下:

        三个条件详解:

        (1)第一个条件要求起始点为0,这使得我们可以将其看作是从原点出发的轨迹。

        (2)第二个条件则表明Lévy过程的增量具有平稳性和独立性,也就是说,无论我们选择观察的时间段长短如何,增量的统计性质都是相同的,并且不同时间段的增量之间是独立的。这一特性使得Lévy过程成为了描述许多自然现象和金融市场中的波动性的重要工具。

        (3)第三个条件强调了Lévy过程在连续时刻处于概率1的状态时处处右连续。简单来说,这意味着Lévy过程在任意时刻t的取值都是连续的。这种连续性的要求与我们熟悉的布朗运动(Brownian Motion)有所不同,后者的轨迹是不连续的。正是这种连续性使得Lévy过程能够更好地描述某些现象,如股票价格的变化、微粒的扩散以及蛋白质的折叠等。

图2 Lévy分布

        数学中有许多概率分布,其中莱维分布是一种非常特殊而有趣的分布。它在金融学、物理学、天文学和信号处理等领域中都有着广泛的应用。

、特性与优势

        (1)长步长和长距离移动: Levy飞行策略通常涉及采取长步长和长距离的移动,这意味着在一次迭代中可能会跳跃到相对远离当前位置的新位置。这与传统的随机游走不同,后者通常涉及小步长和较短距离的移动。由于具有较高长程移动的概率(步长概率为幂律衰减),Levy飞行的移动范围比传统随机行走广很多。

        (2)随机性: Levy飞行是随机性的,步长和方向都是随机选择的。通常,步长和方向都服从特定的概率分布,例如莱维分布。

        (3)长尾分布: Levy分布具有长尾,这意味着在随机游走中可能发生较大的步长。这种长尾分布反映了在某些情况下发生重要事件的可能性相对较低,但当它们发生时,它们可能具有显著的影响。这种分布的特点是,大部分步长相对较短,但偶尔会出现非常长的步长,形成所谓的“跳跃”。

        (4)全局搜索能力: Levy飞行策略能够帮助算法跳出局部最优解,更好地探索全局搜索空间。在优化算法中,这种特性使得算法能够避免陷入局部最优,从而有更大的机会找到全局最优解。

四、数学表达

        1. 数学描述

        (1)步长生成:Levy飞行中的步长是根据Levy分布生成的。Levy分布是一种长尾分布,具有非常大的方差,能够模拟出大跨步的出现。

        (2)方向选择:在每一步中,飞行方向是通过随机选择一个角度来确定的。这样,飞行路径就不再是简单的直线,而是一个随机曲线。

        (3)联合生成: Levy飞行策略将步长和方向的生成过程进行联合,即每一步中同时生成步长和方向,以确保步长和方向之间的相关性。

        2. 数学公式

        (1)Levy分布的概率密度函数(PDF):

        这个函数用于描述Levy飞行中步长的分布情况。

        (2)Levy飞行步长的生成:

        其中,\Gamma是伽玛函数,\beta是步长分布的形状参数,通常取1.5,uv是标准正态分布N(0,\sigma ^{2})随机变量。

、应用与实例

        (1)生物学和生态学:Levy飞行策略被用来模拟动物的觅食行为。许多动物在寻找食物时会表现出类似Levy飞行的随机游走模式。例如,某些鸟类和鱼类在觅食时会采用长距离移动的策略,以增加找到食物的几率。研究者可以利用Levy飞行模型,模拟动物行为,预测物种的分布和生态系统的动态变化。

        (2)优化算法:Levy飞行机制常被用来提高搜索效率,尤其是在全局优化问题中。由于其跳跃特性,Levy飞行能够有效避免陷入局部最优解,从而更有可能找到全局最优解。例如,在布谷鸟搜索算法、蝙蝠算法等元启发式算法中,都引入了Levy飞行策略来增强算法的全局搜索能力。

        (3)GIS领域:Levy飞行可用于优化空间数据的采集与分析。例如,在城市规划和资源管理中,Levy飞行算法可以帮助确定最佳的监测点位置,以最小化资源使用和最大化信息收集。其随机跳跃特性可以有效地覆盖城市中不同的区域,确保数据的多样性和完整性。

        (4)机器学习:Levy飞行被用于特征选择和模型优化。通过在高维特征空间中随机搜索,Levy飞行算法可以帮助选择最具代表性的特征,从而提高模型的性能和效率。此外,Levy飞行还可以与其他智能优化算法结合,如深度学习中的超参数优化,进一步提高模型的准确性和泛化能力。

、参数调整与注意事项

        在使用Levy飞行策略时,需要谨慎调整参数以适应特定问题的需求。例如,在优化算法中,步长控制量α和发现概率pa等参数的设置会直接影响算法的搜索效率和精度。因此,在实际应用中,需要根据问题的特点和需求来选择合适的参数值,并进行充分的验证和测试。

        此外,由于Levy分布的特殊性质,其尾部非常长,导致在模拟过程中出现极端值的概率较高。这可能会导致模拟结果出现偏差,需要在实际应用中进行修正。因此,在使用Levy飞行策略时,还需要注意对极端值的处理和对模拟结果的验证。

相关文章:

BA和CS算法中的Levy飞行策略

Levy飞行策略通过模拟自然界中动物的长距离迁徙行为,指导粒子进行更大范围的搜索,有助于算法快速找到全局最优解。它是一种具有独特优势的随机行为策略,模拟随机游走或搜索过程中的步长和方向,其步长的概率分布为重尾分布&#xf…...

PHP:实现两张无关联表数据的联合分页处理方案

前言 在现代软件开发中,高效地处理数据是至关重要的环节。尤其是在使用 PHP 进行开发时,常常会遇到各种复杂的数据处理需求。其中,实现两张无关联表数据的联合分页处理就是一个具有挑战性的任务。这种需求在很多实际应用场景中都可能出现&am…...

【单元测试】单元测试介绍

1 单元测试基础 1.单元测试:单元测试又称模块测试,属于白盒测试,是最小单位的测试。模块分为程序模块和功能模块。功能模块指实现了一个完整功能的模块(单元),一个完整的程序单元具备输入、加工和输出三个…...

PyQt事件机制及其应用

一、实例前置 一个小闹钟应用 创建主窗口类 首先我们创建了一个名为AlarmClock的类,它继承自QMainWindow。这个类将包含我们的GUI组件和逻辑。 from Alarm_clock import Ui_MainWindowclass AlarmClock(QMainWindow):def __init__(self):super().__init__()# 初始化…...

厦门凯酷全科技有限公司抖音电商服务的卓越典范

在短视频和直播带货迅速崛起的时代,厦门凯酷全科技有限公司(以下简称“凯酷全科技”)以其专业的服务、创新的精神以及对市场的深刻理解,在抖音电商领域中脱颖而出,成为众多品牌商家信赖的选择。本文将深入探讨凯酷全科…...

vue3水波柱状图 ,实现

效果图 //引用页面 <div style"height: 60px;background-color: #fff;border-radius: 5px;width: 40px;"><WavePercentage:percentage"progress"primary-color"#ffcb7c"secondary-color"#ffcb7c"/></div>import Wa…...

如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制

如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制 如何在两台 PostgreSQL 服务器之间使用逻辑复制槽进行数据复制环境准备1. 配置主服务器&#xff08;Publisher&#xff09;1.1 修改 postgresql.conf1.2 修改 pg_hba.conf1.3 重启 PostgreSQL 服务1.4 创建逻辑复制…...

System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本

问题1&#xff1a;“/”应用程序中的服务器错误。 System.Data.OracleClient 需要 Oracle 客户端软件 version 8.1.7 或更高版本。 说明: 执行当前 Web 请求期间&#xff0c;出现未经处理的异常。请检查堆栈跟踪信息&#xff0c;以了解有关该错误以及代码中导致错误的出处的详细…...

【机器人】振动分析和控制工具之Bode图

Bode 图完整介绍 Bode 图由两个部分组成&#xff1a; 幅值图 (Magnitude Plot)&#xff1a;描述系统对不同频率输入信号的增益大小&#xff08;幅值响应&#xff09;。相位图 (Phase Plot)&#xff1a;描述系统输出信号相对于输入信号的相位差。 Bode 图的横轴是频率&#x…...

生成:安卓证书uniapp

地址&#xff1a; https://ask.dcloud.net.cn/article/35777 // 使用keytool -genkey命令生成证书&#xff1a; 官网&#xff1a; keytool -genkey -alias testalias -keyalg RSA -keysize 2048 -validity 36500 -keystore test.keystore ----------------------------------…...

酒店/电影推荐系统里面如何应用深度学习如CNN?

【1】酒店推荐系统里面如何应用CNN&#xff1f;具体过程是什么 在酒店推荐系统中应用卷积神经网络&#xff08;CNN&#xff09;并不是一个常见的选择&#xff0c;因为 CNN 主要用于处理具有空间结构的数据&#xff0c;如图像、音频和某些类型的序列数据。然而&#xff0c;在某…...

【CSS in Depth 2 精译_069】11.3 利用 OKLCH 颜色值来处理 CSS 中的颜色问题(上)

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第四部分 视觉增强技术 ✔️【第 11 章 颜色与对比】 ✔️ 11.1 通过对比进行交流 11.1.1 模式的建立11.1.2 还原设计稿 11.2 颜色的定义 11.2.1 色域与色彩空间11.2.2 CSS 颜色表示法 11.2.2.1 RGB…...

Redis篇-6--原理篇5--单线程模型

1、概述 Redis 采用单线程模型来处理客户端请求&#xff0c;这意味着在任意时刻只有一个命令被执行。这种设计简化了 Redis 的实现&#xff0c;并确保了高并发环境下的数据一致性。尽管 Redis 是单线程的&#xff0c;但它通过高效的内存管理和网络 I/O 操作&#xff0c;仍然能…...

Java版-图论-最小生成树-Prim算法

实现描述 如图&#xff1a; Prim算法的基本思想是从一个顶点开始&#xff0c;逐步构建最小生成树。具体步骤如下&#xff1a; 随机选取一个顶点作为起始点&#xff0c;并将其加入最小生成树的集合中。从该顶点出发&#xff0c;选择一条边连接到其他未被访问的顶点中的最小权…...

Python 基础学习(一)

一.基础语法 注释 Python中单行注释以 # 开头&#xff0c;如下&#xff1a; #!/usr/bin/python3# 第一个注释 print ("Hello, Python!") # 第二个注释多行注释可以用多个 # 号&#xff0c;还有 ‘’’ 和 “”"&#xff1a; #!/usr/bin/python3# 第一个注释…...

vue2使用rtsp视频流接入海康威视摄像头(纯前端)

一.获取海康威视rtsp视频流 海康威视官方的RTSP最新取流格式如下: rtsp://用户名:密码IP:554/Streaming/Channels/101 用户名和密码 IP就是登陆摄像头时候的IP(笔者这里IP是192.168.1.210) 所以笔者的rtsp流地址就是rtsp://用户名:密码192.168.1.210:554/Streaming/Channel…...

利用PHP和GD库实现图片拼接的方法

利用PHP和GD库实现图片拼接的方法主要涉及到加载图片资源、创建目标画布、将图片资源绘制到目标画布上&#xff0c;并最终输出或保存拼接后的图片。以下是实现图片拼接的基本步骤&#xff1a; 加载图片资源&#xff1a; 使用imagecreatefromjpeg()、imagecreatefrompng()或ima…...

自动驾驶领域常用的软件与工具

CarSim&#xff1a;专门针对车辆动力学的仿真软件&#xff0c;能够预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性。CarMaker&#xff1a;德国IPG公司推出的动力学、ADAS和自动驾驶仿真软件&#xff0c;提供精准的车辆本体模型和闭环仿真系统。VTD (Virtual …...

uniapp-内部项目使用文档

uniapp-内部项目使用文档 目录 uniapp-内部项目使用文档阶段1自行实现内容&#xff1a;阶段1问题记录&#xff1a; 阶段2自行实现内容&#xff1a; 阶段3 APP项目介绍及规范阶段4 公共组件方法UseList 列表页面HooksListItem 列表项uni-load-more 列表加载更多组件CardTitle 列…...

ASP .NET Core 中的环境变量

在本文中&#xff0c;我们将通过组织一场小型音乐会&#xff08;当然是在代码中&#xff09;来了解 ASP .NET Core 中的环境变量。让我们从创建项目开始&#xff1a; dotnet new web --name Concert 并更新Program.cs&#xff1a; // replace this: app.MapGet("/"…...

学科竞赛管理系统

文末获取源码和万字论文&#xff0c;制作不易&#xff0c;感谢点赞支持。 摘 要 随着国家教育体制的改革&#xff0c;全国各地举办的竞赛活动数目也是逐年增加&#xff0c;面对如此大的数目的竞赛信息&#xff0c;传统竞赛管理方式已经无法满足需求&#xff0c;为了提高效率&am…...

unity 让文字变形

效果&#xff1a; using TMPro; using UnityEngine; using NaughtyAttributes;[ExecuteInEditMode] public class TMTextPerpective : MonoBehaviour {[OnValueChanged("DoPerspective")][Range(-1f, 1f)]public float CenterBias 0f;[OnValueChanged("DoPers…...

Linux高并发服务器开发 第一天(Linux的目录结构 cd用法 终端提示符格式)

目录 1.命令解析器&#xff1a;shell 2.LINUX下的目录结构 3.cd的使用 3.1cd 绝对路径 3.2cd 相对路径 3.3cd 回车 3.4cd - 4. 终端提示符格式 1.命令解析器&#xff1a;shell 默认运行与计算机系统终端的 用来解析用户输入命令的工具 内核&#xff1a;操作系统的核…...

可造成敏感信息泄露!Spring Boot之Actuator信息泄露漏洞三种利用方式总结

1.介绍 Spring Boot是一个基于Spring的套件&#xff0c;它提供了一个即开即用的应用程序架构&#xff0c;可以简化Spring应用的创建及部署流程&#xff0c;帮助开发者更轻松快捷地构建出企业及应用。 Spring Boot项目中Actuator模块提供了众多HTTP接口端点&#xff08;Endpoi…...

支持图像和视频理解多模态开源大模型:CogVLM2 CogVLM2-Video

CogVLM2和CogVLM2-Video是新一代的开源模型&#xff0c;支持图像和视频理解&#xff0c;具有显著的性能提升。最近发布的更新包括CogVLM2论文的发表、在线演示和对视频理解的支持&#xff0c;能够处理最多1分钟的视频。新模型支持中英文&#xff0c;文本长度可达8K&#xff0c;…...

ClouderaManager 集群搭建

前提&#xff1a;服务器之前做过域名映射、免密登录 ClouderaManager 集群 1. 组件分布规划 服务器服务器h1zk、hdfs(dn)、yarn(nm)、spark、kafka、flumeh2hdfs(nn-standy)、yarn(rm-active)、sparkh3hdfs(nn-active)、yarn(rm-standy)、hive、sparkh4zk、hdfs(dn)、yarn(n…...

Docker 搭建 gitlab 服务器卡顿问题解决方法(创建:swap分区)

Docker 安装系列 服务器搭建了一个 gitlab 服务器以供自己开发使用&#xff0c;服务器搭建很简单&#xff0c;但是使用起来是相当的卡顿&#xff0c;在代码 pull&#xff0c;push 过程中都会有相应的延迟。gitlab 启动运行就占用了大量的内存&#xff0c;4G内存在启动后已经所…...

PVE修改IP地址

一、在局域网的电脑浏览器输入PVE的IP地址登录后台&#xff0c;从左边的菜单找到“PVE”—“_Shell”菜单&#xff0c;进入网页版的ssh界面下&#xff1b;或者在主机的控制台下输入root密码后登录到ssh下&#xff1b; 二、输入以下命令回车&#xff1a; vi /etc/network/inter…...

智能合约的离线签名(EIP712协议)解决方案

引言&#xff1a;本文由天玄链开源开发者提供&#xff0c;欢迎报名公益天玄链训练营 https://blockchain.163.com/trainingCamp 一、解决核心问题 项目方不支付gas费&#xff0c;由用户自己发起交易&#xff0c;用户支付gas费。用户的数据保存在链下服务器中&#xff0c;tok…...

大模型Qwen面试内容整理-应用场景与案例分析

Qwen模型凭借其强大的自然语言理解和生成能力,在多个实际应用场景中得到了广泛应用。以下是Qwen模型的主要应用场景及一些典型的案例分析,展示了它如何解决具体问题和带来实际价值。 智能对话系统 ● 应用场景 ○ 客服机器人:Qwen被用于开发智能客服机器人,能够理解客户的问…...

申请免费网站域名/合肥网络公司排名

1、每条记录包含三个数据项&#xff1a; 0-201-70353-x 4 24.99 第一次项是书的ISBN号&#xff0c;第二项是售出的册数&#xff0c;最后一项是书的单价。书店老板需要查询此档案&#xff0c;计算每本书的销售量、销售额及平均售价。 划分子问题 1.定义变量 2.进行…...

权威的手机网站建设/seo中文意思

目前需要说服客户使用webservice 而不是socket. 我觉得要先分别解释下什么是socket 什么是webservice..这个要我该怎么说才比较形象,让人一定就明白. socket 属于7层中的那个层. 网上找了找,越看越迷糊. 有说属于应用层的. 有说属于传输和网络层的. 还有所属于网络和传输之间…...

安徽茶叶学会 网站建设/东莞外贸推广公司

使用Cartool工具包分析EEG源成像1 基本要求1.1 EEG预处理 (EEG Pre-processing)1.2 时间过滤 (Temporal Filtering)1.3 下采样&#xff08;降低采样率&#xff09; (Down-Sampling)1.4 电极插值与ICA (Electrode Interpolation and ICA)1.5 空间过滤 (Spatial Filtering)1.6 检…...

做独立网站需要注意什么好/网站推广方式组合

String str; str&#xff1d;str.substring(int beginIndex);截取掉str从首字母起长度为beginIndex的字符串&#xff0c;将剩余字符串赋值给str&#xff1b; str&#xff1d;str.substring(int beginIndex&#xff0c;int endIndex);截取str中从beginIndex开始至endIndex结束时…...

做此广告的网站/长沙优化官网服务

在cmd命令行中切换到指定目录&#xff0c;或者直接使用绝对路径。 certutil -hashfile D:\file.txt MD5 certutil -hashfile D:\file.txt SHA1 certutil -hashfile D:\file.txt SHA256 如图生成文件MD5值。...

wordpress第一张缩略图/处理事件seo软件

我正在使用docker-compose.yaml构建我的应用程序以进行本地开发&#xff0c;使用两个Dockerfiles - 一个用于app(WordPress)&#xff0c;另一个用于nginx。由于这是一个使用Jenkins管道构建的特定应用程序&#xff0c;我无法更改Dockerfiles&#xff0c;但我希望能够在本地测试…...