当前位置: 首页 > news >正文

Flink执行模式(批和流)如何选择

DataStream API支持不同的运行时执行模式(batch/streaming),你可以根据自己的需求选择对应模式。

DataStream API的默认执行模式就是streaming,用于需要连续增量处理并且预计会一直保持在线的无界(数据源输入是无限的)作业。

而batch执行模式则用于有界(输入有限)作业,即已知的输入是固定的,并且不会连续运行。

Flink统一了对batch和streaming不同执行模式的处理方式,即共用同一套api,不管你配置了什么执行模式。这也意味着在有限的输入上,batch和streaming的处理最终结果应该是相同的。这里强调最终结果,是因为在streaming模式下执行的作业可能会产生增量更新(比如数据库中的upserts),而批处理作业最终只会产生一个最终结果,但最终结果是相同的,不过两者的实现方式可能不同。

在batch模式下,因为输入是有限的,可能就会有一些额外的优化,比如可以使用不同的join/aggregation策略,以及不同的shuffle实现,以实现更高效的任务调度和故障恢复行为。

1. batch和streaming之间的选择

最简单的判定规则:有界作业使用batch,无界作业使用str

相关文章:

Flink执行模式(批和流)如何选择

DataStream API支持不同的运行时执行模式(batch/streaming),你可以根据自己的需求选择对应模式。 DataStream API的默认执行模式就是streaming,用于需要连续增量处理并且预计会一直保持在线的无界(数据源输入是无限的)作业。 而batch执行模式则用于有界(输入有限)作业…...

LeetCode:101. 对称二叉树

跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:101. 对称二叉树 给你一个二叉树的根节点 root , 检查它是否轴对称。 示例 1: 输…...

LDO输入电压不满足最小压差时输出会怎样?

1、LDO最小压差 定义:低压差稳压器(Low-dropout regulator,LDO)LDO的最小压差Vdo指的是LDO正常工作时,LDO的输入电压必须高于LDO输出电压的差值,即Vin≥VdoVout   Vdo的值不是定值,会随着负载…...

源码分析之Openlayers中ZoomSlider滑块缩放控件

概述 ZoomSlider滑块缩放控件就是Zoom缩放控件的异形体,通过滑块的拖动或者点击滑槽,实现地图的缩放;另外其他方式控制地图缩放时,也会引起滑块在滑槽中的位置改变;即ZoomSlider滑块缩放控件会监听地图的缩放级别&…...

在Win11系统上安装Android Studio

诸神缄默不语-个人CSDN博文目录 下载地址:https://developer.android.google.cn/studio?hlzh-cn 官方安装教程:https://developer.android.google.cn/studio/install?hlzh-cn 点击Next,默认会同时安装Android Studio和Android虚拟机&#…...

华为ensp--BGP路径选择-AS_Path

学习新思想,争做新青年,今天学习的是BGP路径选择-AS_Path 实验目的: 理解AS_Path属性的概念 理解通过AS_Path属性进行选路的机制 掌握修改AS_Path属性的方法 实验内容: 本实验模拟了一个运营商网络场景,所有路由器都运行BGP协议&#xff…...

Android Java Ubuntu系统如何编译出 libopencv_java4.so

Cmake: cd ~ wget https://github.com/Kitware/CMake/releases/download/v3.30.3/cmake-3.30.3-linux-x86_64.tar.gztar -xzvf cmake-3.30.3-linux-x86_64.tar.gz sudo ln -sf $(pwd)/cmake-3.30.3-linux-x86_64/bin/* /usr/bin/cmake --versionAndroid NDK: wget https://…...

WPF Binding 绑定

绑定是 wpf 开发中的精髓,有绑定才有所谓的数据驱动。 1 . 背景 目前 wpf 界面可视化的控件,继承关系如下, 控件的数据绑定,基本上都要借助于 FrameworkElement 的 DataContext 属性。 只有先设置了控件的 DataContext 属性&…...

算法笔记—前缀和(动态规划)

【模板】前缀和_牛客题霸_牛客网 (nowcoder.com) #include <initializer_list> #include <iostream> #include <vector> using namespace std;int main() {//输入数据int n,q;cin>>n>>q;vector<int> arr;arr.resize(n1);for(int i1;i<…...

将HTML转换为PDF:使用Spire.Doc的详细指南(二)无水印版

目录 引言 一、准备工作 1. 下载Spire.Doc for Java破解版 2. 将JAR包安装到本地Maven (1) 打开命令提示符 (2) 输入安装命令 (3) 在pom.xml中导入依赖 二、实现HTML到PDF的转换 1. 创建Java类 2. 完整代码示例 3. 代码解析 4. 处理图像 5. 性能优化 6. 错误处理…...

V900新功能-电脑不在旁边,通过手机给PLC远程调试网关配置WIFI联网

您使用BDZL-V900时&#xff0c;是否遇到过以下这种问题&#xff1f; 去现场配置WIFI发现没带电脑&#xff0c;无法联网❌ 首次配置WIFI时需使用网线连电脑&#xff0c;不够快捷❌ 而博达智联为解决该类问题&#xff0c;专研了一款网关配网工具&#xff0c;实现用户现场使用手机…...

prober.php探针

raw.githubusercontent.com/kmvan/x-prober/master/dist/prober.php...

esp8266_TFTST7735语音识别UI界面虚拟小助手

文章目录 一 实现思路1 项目简介1.1 项目效果1.2 实现方式 2 项目构成2.1 软硬件环境2.2 完整流程总结&#xff08;重点整合&#xff09;(1) 功能逻辑图(2) 接线(3) 使用esp8266控制TFT屏(4)TFT_espI库配置方法(5) TFT_esp库常用代码详解(6)TFT屏显示图片(7) TFT屏显示汉字(8) …...

【CSS in Depth 2 精译_086】14.3:CSS 剪切路径(clip-path)的用法

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第四部分 视觉增强技术 ✔️【第 14 章 蒙版、形状与剪切】 ✔️ 14.1 滤镜 14.1.1 滤镜的类型14.1.2 背景滤镜 14.2 蒙版 14.2.1 带渐变效果的蒙版特效14.2.2 基于亮度来定义蒙版14.2.3 其他蒙版属…...

【服务器】MyBatis是如何在java中使用并进行分页的?

MyBatis 是一个支持普通 SQL 查询、存储过程和高级映射的持久层框架。它消除了几乎所有的 JDBC 代码和参数的手动设置以及结果集的检索。MyBatis 可以通过简单的 XML 或注解来配置和映射原始类型、接口和 Java 的 POJO&#xff08;Plain Old Java Objects&#xff0c;普通老式 …...

vue 文本域 展示的内容格式要和填写时保持一致

文本域 展示的内容格式要和填写时保持一致 <el-inputtype"textarea":rows"5"placeholder"请输入内容"v-model"formCredit.point"style"width:1010px;" > </el-input> 样式加个&#xff1a; white-space: pre-w…...

linux-----进程及基本操作

进程的基本概念 定义&#xff1a;在Linux系统中&#xff0c;进程是正在执行的一个程序实例&#xff0c;它是资源分配和调度的基本单位。每个进程都有自己独立的地址空间、数据段、代码段、栈以及一组系统资源&#xff08;如文件描述符、内存等&#xff09;。进程的组成部分&am…...

[Python学习日记-73] 面向对象实战1——答题系统

[Python学习日记-73] 面向对象实战1——答题系统 简介 需求模型——5w1h8c 领域模型 设计模型 实现模型 案例&#xff1a;年会答题系统 简介 在学习完面向对象之后你会发现&#xff0c;你还是不会自己做软件做系统&#xff0c;这是非常正常的&#xff0c;这是因为计算机软…...

Win10将WindowsTerminal设置默认终端并添加到右键(无法使用微软商店)

由于公司内网限制&#xff0c;无法通过微软商店安装 Windows Terminal&#xff0c;本指南提供手动安装和配置新版 Windows Terminal 的步骤&#xff0c;并添加右键菜单快捷方式。 1. 下载新版终端安装包: 访问 Windows Terminal 的 GitHub 发布页面&#xff1a;https://githu…...

AOI外观缺陷检测机

主要功能&#xff1a; 快速检测产品装配缺陷&#xff0c;包括螺丝、元器件、端子排线、二维码、一维条码、识别读码、产品外观 Logo缺陷以及产品标签、字符缺陷检测等产品的缺陷检测。 设备优势&#xff1a;1.采用轻型可移动支架&#xff0c;可以快速对接产线工艺工序&am…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...