Google发布图像生成新工具Whisk:无需复杂提示词,使用图像和人工智能将想法可视化并重新混合
Whisk 是 Google Labs 的一项新实验,可使用图像进行快速而有趣的创作过程。Whisk不会生成带有长篇详细文本提示的图像,而是使用图像进行提示。只需拖入图像,即可开始创建。

whisk总结如下:
-
Whisk 是 Google 实验室最新的生成图像实验,专注于快速视觉构思,而无需深入理解提示!
-
只需添加几张图像作为方向参考(场景、主题、风格),Whisk 就会推荐一些图像供您继续完善。
-
Whisk 由 Google 的 Gemini(具有视觉理解功能的语言模型)和 Imagen 3(生成图像模型)协同工作提供支持。
-
将图画变成毛绒玩具?制作史诗般的节日贺卡?制作漂亮的心情板?或者故事的开头……


生成示例
在后台,Gemini 模型会自动为您的图片编写详细的说明。然后,它会将这些说明输入到 Google 最新的图片生成模型Imagen 3中。此过程会捕捉主题的本质,而不是一模一样的复制品。可以轻松地以新颖的方式重新组合主题、场景和风格。



如何使用?
-
Whisk试用网址:https://labs.google/fx/tools/whisk/unsupported-country
-
whisk介绍:https://labs.google/fx/tools/whisk/faq
使用说明
-
可以上传3 张图片,随后「Whisk」就会生成出符合你的条件的AI 图片。如果你觉得生成出来的AI 图片不符合你的期待,则是可以输入文字作为补充,让「Whisk」重新生成出符合所有条件的AI 图片。

-
进入「Whisk」网页后,点击左下角的「+号」,即可开始生成AI 图片。

3.可以新增3 张图片,让「Whisk」依照你的风格、样式,生成适合的AI 图片。

4. 生成好的AI 图片可以透过文字再进行编辑,也可以直接下载。
相关文章:
Google发布图像生成新工具Whisk:无需复杂提示词,使用图像和人工智能将想法可视化并重新混合
Whisk 是 Google Labs 的一项新实验,可使用图像进行快速而有趣的创作过程。Whisk不会生成带有长篇详细文本提示的图像,而是使用图像进行提示。只需拖入图像,即可开始创建。 whisk总结如下: Whisk 是 Google 实验室最新的生成图像实…...
docker pull(拉取镜像)的时候,无法下载或者卡在Waiting的解决方法
docker pull的时候,卡在Waiting的解决方法 一般情况(大部分镜像都可以拉取)更换镜像源 进一步(如es等拉取不到)在镜像同步站搜索详细步骤 还可以在挂载的时候,让其下载对应的版本 一般情况(大部…...
51c~Pytorch~合集4
我自己的原文哦~ https://blog.51cto.com/whaosoft/12311033 一、Pytorch~训练-使用 这里介绍了Pytorch中已经训练好的模型如何使用 Pytorch中提供了很多已经在ImageNet数据集上训练好的模型了,可以直接被加载到模型中进行预测任务。预训练模型存放在Pytorch的…...
windows下,golang+vscode+delve 远程调试
1 先在远程服务器安装golang和delve golang的安装,通过官网直接下载安装包安装接口 go install github.com/go-delve/delve/cmd/dlvlatest 如果dlv和golang版本不匹配,这里把latest换成匹配的版本,比如1.20.0 2 编译带调试信息的程序 go bu…...
弥散张量分析开源软件 DSI Studio 简体中文汉化版可以下载了
网址: (63条消息) DSIStudio简体中文汉化版(2022年7月)-算法与数据结构文档类资源-CSDN文库...
视频编辑最新SOTA!港中文Adobe等发布统一视频生成传播框架——GenProp
文章链接:https://arxiv.org/pdf/2412.19761 项目链接:https://genprop.github.io 亮点直击 定义了一个新的生成视频传播问题,目标是利用 I2V 模型的生成能力,将视频第一帧的各种变化传播到整个视频中。 精心设计了模型 GenProp&…...
多维方向性增强分割通过大规模视觉模型实现|文献速递-视觉大模型医疗图像应用
Title 题目 Multidimensional Directionality-Enhanced Segmentation via large visionmodel 多维方向性增强分割通过大规模视觉模型实现 01 文献速递介绍 黄斑疾病影响全球约2亿人,已成为视力损害的主要原因之一。黄斑是视网膜中光感受器密度最高的区域&#…...
【Linux探索学习】第二十五弹——动静态库:Linux 中静态库与动态库的详细解析
Linux学习笔记: https://blog.csdn.net/2301_80220607/category_12805278.html?spm1001.2014.3001.5482 前言: 在 Linux 系统中,静态库和动态库是开发中常见的两种库文件类型。它们在编译、链接、内存管理以及程序的性能和可维护性方面有着…...
远程和本地文件的互相同步
文章目录 1、rsync实现类似git push pull功能1. 基础概念2. 示例操作3. 定制化和进阶用法4. 定时同步(类似自动化) 2 命令简化1. 动态传参的脚本2. Shell 函数支持动态路径3. 结合环境变量和参数(更简洁)4. Makefile 支持动态路径…...
自然语言处理之jieba分词和TF-IDF分析
jieba分词和TF-IDF分析 目录 jieba分词和TF-IDF分析1 jieba1.1 简介1.2 终端下载1.3 基本语法 2 TF-IDF分析2.1 什么是语料库2.2 TF2.3 IDF2.4 TF-IDF2.5 函数导入2.6 方法 3 实际测试3.1 问题解析3.2 代码测试 1 jieba 1.1 简介 结巴分词(Jieba)是一个…...
探索式测试
探索式测试是一种软件测试风格,它强调独立测试人员的个人自由和职责,为了持续优化其工作的价值,将测试学习、测试设计、测试执行和测试结果分析作为相互支持的活动,在整个项目实现过程中并行地执行。 选择合适的探索式测试方法我…...
服务器数据恢复—raid5故障导致上层ORACLE无法启动的数据恢复案例
服务器数据恢复环境&故障: 一台服务器上的8块硬盘组建了一组raid5磁盘阵列。上层安装windows server操作系统,部署了oracle数据库。 raid5阵列中有2块硬盘的硬盘指示灯显示异常报警。服务器操作系统无法启动,ORACLE数据库也无法启动。 服…...
ISP各模块功能介绍
--------声明,本文为转载整理------- ISP各个模块功能介绍: 各模块前后效果对比: 黑电平补偿(BLC) 在理想情况下,没有光照射的像素点其响应值应为0。但是,由于杂质、受热等其它原因的影响&…...
Python 数据建模完整流程指南
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过 Python 展示数据建模的完整流程,包括数据准备、建…...
深入学习RocketMQ
参考:RocketMQ从从入门到精通_rocketmq入门到精通-CSDN博客 1、消息的类型 普通消息 顺序消息 延时消息 批量消息 事务消息 2、在java中使用 2.1、pom.xml中加入依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId…...
国产编辑器EverEdit - 扩展脚本:关闭所有未修改文档
1 扩展脚本:关闭所有未修改文档 1.1 应用场景 当用户打开过多文档时,部分文档已经修改,而大部分没有修改,为了减少在众多已打开文档中来回跳转的不便,可以将没有修改的文档全部关闭,但目前提供的快速关闭窗…...
数据结构二叉树-C语言
数据结构二叉树-C语言 1.树1.1树的概念与结构1.2树的相关术语1.3树的表示1.4树形结构实际运用场景 2.二叉树2.1概念与结构2.2特殊的二叉树2.2.1满二叉树2.2.2完全二叉树 2.3二叉树存储结构2.3.1顺序结构2.3.2链式结构 3.实现顺序结构的二叉树4.实现链式结构二叉树4.1前中后序遍…...
Python基于YOLOv8和OpenCV实现车道线和车辆检测
使用YOLOv8(You Only Look Once)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。 1、系统主要功能 车道检测&am…...
代码随想录算法训练营第六十天|KM94.城市间货物运输Ⅰ|KM95.城市间货物运输Ⅱ|KM96.城市间货物运输Ⅲ
94. 城市间货物运输 I 2、Bellman_ford队列优化算法(又名SPFA) SPFA是对Bellman_ford算法的优化,由于Bellman_ford 算法 每次都是对所有边进行松弛,其实是多做了一些无用功。其实只需要对 上一次松弛的时候更新过的节点作为出发节…...
人工智能学习路线全链路解析
一、基础准备阶段(预计 2-3 个月) (一)数学知识巩固与深化 线性代数(约 1 个月): 矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法)&…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
