当前位置: 首页 > news >正文

ResNet--深度学习中的革命性网络架构

一、引言

在深度学习的研究和应用中,网络架构的设计始终是一个关键话题。随着计算能力和大数据的不断提升,深度神经网络逐渐成为解决复杂任务的主流方法。然而,随着网络层数的增加,训练深度神经网络往往面临梯度消失或梯度爆炸的问题,这使得网络性能无法充分发挥。2015年,微软研究院的研究团队提出了“残差网络”(ResNet, Residual Networks)架构,凭借其突破性的设计,成功解决了深层网络的训练问题,并在多个计算机视觉任务中取得了显著的进展。
在这里插入图片描述

二、ResNet的全称与核心思想

ResNet,顾名思义,是“残差网络”的缩写。残差网络的核心思想是引入“残差连接”(Residual Connection),通过直接将输入信号绕过一个或多个层,和经过这些层的输出信号相加,从而减轻深层网络训练过程中的梯度消失问题。简言之,残差连接帮助神经网络学习“残差映射”,而不是学习完整的目标映射,使得网络的训练更加高效和稳定。

这种创新性的残差结构使得网络在理论和实践中都能够显著提高性能,尤其是在处理非常深的网络时,这一结构表现尤为突出。

三、ResNet的诞生与发展

ResNet的提出源于深度神经网络训练中的一个长期难题:随着网络层数的增加,训练变得越来越困难,网络的性能反而会下降。这一现象被称为“退化问题”。传统的神经网络往往难以通过直接优化层与层之间的连接来解决这一问题。

2015年,微软研究院的何凯明等人提出了ResNet,并在论文《Deep Residual Learning for Image Recognition》中系统阐述了这一网络架构。ResNet的关键创新在于引入了“残差模块”,即通过跳跃连接(skip connection)让输入与输出直接相加,使得每一层都可以学习到输入信号与期望输出之间的差异(残差)。这种设计大大简化了深层网络的训练难度,并使得网络能够成功训练数百甚至上千层的深度网络。

该论文在2015年的ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了突破性的成绩,ResNet获得了冠军,并且大幅度提高了分类精度,其表现超过了此前的所有网络架构。

四、ResNet相关算法模型

ResNet的影响不仅仅限于其原始的设计。ResNet的残差模块被广泛借鉴和扩展,发展出了多个变种模型。例如:

  • ResNet-50、ResNet-101、ResNet-152:这些模型通过不同的网络深度进行区分,分别代表了50层、101层和152层的深度网络,适用于不同规模的数据集和任务。
  • ResNeXt:这是ResNet的一种扩展版本,引入了“组卷积”(group convolution)概念,通过增加网络宽度而非深度来提高性能。
  • DenseNet:虽然与ResNet有所不同,但DenseNet同样引入了类似的残差连接设计,其特点是每一层都与前面所有层进行连接,形成一种密集连接模式。

五、ResNet的使用方式与特点

ResNet的使用方式主要集中在计算机视觉领域,尤其是图像分类、物体检测、语义分割等任务中。由于其在深度学习中的成功应用,ResNet已经成为大多数视觉任务中常用的基础网络架构之一。

其主要特点包括:

  1. 解决深层网络训练难题:通过引入残差连接,ResNet大幅度降低了网络训练中的梯度消失问题,使得极深的网络(例如100层以上)也能够有效训练。
  2. 模块化设计:ResNet的残差模块可以方便地堆叠和扩展,因此在各种不同的深度网络中都能发挥作用。
  3. 高效性:尽管网络非常深,但通过残差结构的引入,网络的训练和推理效率得到了提升,性能与计算成本之间达到了较好的平衡。

六、ResNet的应用领域

ResNet的成功不仅仅局限于图像分类任务,它的应用领域极为广泛,涵盖了多个方向:

  1. 计算机视觉:ResNet广泛应用于图像分类、物体检测、语义分割、人脸识别等任务。其强大的特征学习能力使得其在多个视觉任务中表现优异,成为许多视觉模型的基础。
  2. 语音识别:通过适当的改进,ResNet也被应用于语音识别领域,尤其是在深度特征提取上,能够帮助提升语音识别系统的准确性。
  3. 医学影像:在医学影像分析中,ResNet常被用于疾病的早期诊断,如癌症的图像识别、器官分割等任务。
  4. 自动驾驶与机器人:在自动驾驶和机器人领域,ResNet的图像处理能力也被广泛应用于环境感知、路径规划、目标跟踪等任务。
  5. 自然语言处理:尽管ResNet最初用于视觉任务,但其结构的理念也被迁移到自然语言处理(NLP)任务中,例如用于文本分类、情感分析、机器翻译等。

七、小结

作为深度学习领域的一项重要创新,ResNet在突破深层网络训练瓶颈方面做出了巨大贡献,推动了人工智能技术的快速发展。其引入的残差连接机制,至今仍对许多网络架构设计产生深远影响。随着人工智能技术的不断进步,ResNet及其变种在更多领域的应用仍在不断扩展,未来必将在多个行业中发挥重要作用。

相关文章:

ResNet--深度学习中的革命性网络架构

一、引言 在深度学习的研究和应用中,网络架构的设计始终是一个关键话题。随着计算能力和大数据的不断提升,深度神经网络逐渐成为解决复杂任务的主流方法。然而,随着网络层数的增加,训练深度神经网络往往面临梯度消失或梯度爆炸的…...

TypeScript语言的语法糖

TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言,它在JavaScript的基础上添加了一些强类型的特性,使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中,不仅包含了静态类型、接口、枚举等强大的特性&…...

17.2 图形绘制4

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 17.2.5 线条样式 C#为画笔绘制线段提供了多种样式:一是线帽(包括起点和终点处)样式&#xff1b…...

tomcat核心组件及原理概述

目录 1. tomcat概述 1.1 概念 1.2 官网地址 2. 基本使用 2.1下载 3. 整体架构 3.1 核心组件 3.2 从web.xml配置和模块对应角度 3.3 如何处理请求 4. 配置JVM参数 5. 附录 1. tomcat概述 1.1 概念 什么是tomcat Tomcat是一个开源、免费、轻量级的Web服务器。 Tomca…...

本地部署DeepSeek教程(Mac版本)

第一步、下载 Ollama 官网地址:Ollama 点击 Download 下载 我这里是 macOS 环境 以 macOS 环境为主 下载完成后是一个压缩包,双击解压之后移到应用程序: 打开后会提示你到命令行中运行一下命令,附上截图: 若遇…...

MyBatis-Plus笔记-快速入门

大家在日常开发中应该能发现,单表的CRUD功能代码重复度很高,也没有什么难度。而这部分代码量往往比较大,开发起来比较费时。 因此,目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…...

爬取豆瓣书籍数据

# 1. 导入库包 import requests from lxml import etree from time import sleep import os import pandas as pd import reBOOKS [] IMGURLS []# 2. 获取网页源代码 def get_html(url):headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36…...

基于微信小程序的电子商城购物系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

6-图像金字塔与轮廓检测

文章目录 6.图像金字塔与轮廓检测(1)图像金字塔定义(2)金字塔制作方法(3)轮廓检测方法(4)轮廓特征与近似(5)模板匹配方法6.图像金字塔与轮廓检测 (1)图像金字塔定义 高斯金字塔拉普拉斯金字塔 高斯金字塔:向下采样方法(缩小) 高斯金字塔:向上采样方法(放大)…...

【Ai】DeepSeek本地部署+Page Assist图形界面

准备工作 1、ollama,用于部署各种开源模型,并开放接口的程序 https://ollama.com/download 2、deepseek-r1:32b 模型 https://ollama.com/library/deepseek-r1:32b 不同的模型版本对计算机性能的要求不一样,版本越高对显卡和内存的要求越高…...

【最长不下降子序列——树状数组、线段树、LIS】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 1e510; int a[N], b[N], tr[N];//a保存权值&#xff0c;b保存索引,tr保存f&#xff0c;g前缀属性最大值 int f[N], g[N]; int n, m; bool cmp(int x, int y) {if(a[x] ! a[y]) return a[x] < a[…...

【实战篇章】深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据

文章目录 深入探讨&#xff1a;服务器如何响应前端请求及后端如何查看前端提交的数据一、服务器如何响应前端请求HTTP 请求生命周期全解析1.前端发起 HTTP 请求&#xff08;关键细节强化版&#xff09;2. 服务器接收请求&#xff08;深度优化版&#xff09; 二、后端如何查看前…...

Games104——引擎工具链基础

总览 工具链 用户到引擎架构图 工具链是衔接不同岗位、软件之间的桥梁&#xff0c;比如美术与技术&#xff0c;策划与美术&#xff0c;美术软件与引擎本身等&#xff0c;有Animation、UI、Mesh、Shader、Logical 、Level Editor等等。一般商业级引擎里的工具链代码量是超过…...

分层多维度应急管理系统的设计

一、系统总体架构设计 1. 六层体系架构 #mermaid-svg-QOXtM1MnbrwUopPb {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QOXtM1MnbrwUopPb .error-icon{fill:#552222;}#mermaid-svg-QOXtM1MnbrwUopPb .error-text{f…...

【漏斗图】——1

🌟 解锁数据可视化的魔法钥匙 —— pyecharts实战指南 🌟 在这个数据为王的时代,每一次点击、每一次交易、每一份报告背后都隐藏着无尽的故事与洞察。但你是否曾苦恼于如何将这些冰冷的数据转化为直观、吸引人的视觉盛宴? 🔥 欢迎来到《pyecharts图形绘制大师班》 �…...

(二)QT——按钮小程序

目录 前言 按钮小程序 1、步骤 2、代码示例 3、多个按钮 ①信号与槽的一对一 ②多对一&#xff08;多个信号连接到同一个槽&#xff09; ③一对多&#xff08;一个信号连接到多个槽&#xff09; 结论 前言 按钮小程序 Qt 按钮程序通常包含 三个核心文件&#xff1a; m…...

【Linux】从硬件到软件了解进程

个人主页~ 从硬件到软件了解进程 一、冯诺依曼体系结构二、操作系统三、操作系统进程管理1、概念2、PCB和task_struct3、查看进程4、通过系统调用fork创建进程&#xff08;1&#xff09;简述&#xff08;2&#xff09;系统调用生成子进程的过程〇提出问题①fork函数②父子进程关…...

HTB:Alert[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用ffuf对alert.htb域名进行子域名FUZZ 使用go…...

ARM嵌入式学习--第十天(UART)

--UART介绍 UART(Universal Asynchonous Receiver and Transmitter)通用异步接收器&#xff0c;是一种通用串行数据总线&#xff0c;用于异步通信。该总线双向通信&#xff0c;可以实现全双工传输和接收。在嵌入式设计中&#xff0c;UART用来与PC进行通信&#xff0c;包括与监控…...

玉米苗和杂草识别分割数据集labelme格式1997张3类别

数据集格式&#xff1a;labelme格式(不包含mask文件&#xff0c;仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数)&#xff1a;1997 标注数量(json文件个数)&#xff1a;1997 标注类别数&#xff1a;3 标注类别名称:["corn","weed","Bean…...

哈夫曼树

哈夫曼树&#xff08;Huffman Tree&#xff09;是一种最优的二叉树&#xff0c;常用于数据压缩&#xff0c;如在 Huffman 编码中使用。它是根据字符出现的频率来构造的&#xff0c;频率越高的字符越靠近树的根&#xff0c;频率低的字符则在较深的节点上。其核心思想是通过构建一…...

wax到底是什么意思

在很久很久以前&#xff0c;人类还没有诞生文字之前&#xff0c;人类就产生了语言&#xff1b;在诞生文字之前&#xff0c;人类就已经使用了语言很久很久。 没有文字之前&#xff0c;人们的语言其实是相对比较简单的&#xff0c;因为人类的生产和生活水平非常低下&#xff0c;…...

笔记:使用ST-LINK烧录STM32程序怎么样最方便?

一般板子在插件上&#xff0c; 8脚 3.3V;9脚 CLK;10脚 DIO;4脚GND ST_Link 19脚 3.3V;9脚 CLK;7脚 DIO;20脚 GND 烧录软件&#xff1a;ST-LINK Utility&#xff0c;Keil_5; ST_Link 接口针脚定义&#xff1a; 按定义连接ST_Link与电路板&#xff1b; 打开STM32 ST-LINK Uti…...

数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)

一、数据集 二、导入数据 三、K-Means聚类 数据说明:提供一组数据,含体重、胆固醇、性别。 分析目标:找到这组数据中需要治疗的群体供后续使用。 一、数据集 点击下载数据集 二、导入数据 三、K-Means聚类 Ending, congratulations, youre done....

Python在数据科学领域的深度应用:从数据处理到机器学习模型构建

Python在数据科学领域的深度应用:从数据处理到机器学习模型构建 在当今大数据与人工智能蓬勃发展的时代,Python凭借其简洁的语法、强大的库支持和活跃的社区,已成为数据科学家和工程师的首选编程语言。本文将深入探讨Python在数据科学领域的应用,从数据预处理、探索性分析…...

海外问卷调查渠道查,具体运营的秘密

相信只要持之以恒并逐渐掌握技巧&#xff0c;每一位调查人在踏上征徐之时都会非常顺利的。并在日后的职业生涯中拥有捉刀厮杀的基本技能&#xff01;本文会告诉你如何做好一个优秀的海外问卷调查人。 在市场经济高速发展的今天&#xff0c;众多的企业为了自身的生存和发展而在…...

穷举vs暴搜vs深搜vs回溯vs剪枝系列一>单词搜索

题解如下 题目&#xff1a;解析决策树&#xff1a;代码设计&#xff1a; 代码&#xff1a; 题目&#xff1a; 解析 决策树&#xff1a; 代码设计&#xff1a; 代码&#xff1a; class Solution {private boolean[][] visit;//标记使用过的数据int m,n;//行&#xff0c;列char…...

万字长文深入浅出负载均衡器

前言 本篇博客主要分享Load Balancing&#xff08;负载均衡&#xff09;&#xff0c;将从以下方面循序渐进地全面展开阐述&#xff1a; 介绍什么是负载均衡介绍常见的负载均衡算法 负载均衡简介 初识负载均衡 负载均衡是系统设计中的一个关键组成部分&#xff0c;它有助于…...

基于SpringBoot的青年公寓服务平台的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

经典游戏红色警戒2之英语

1. New construction options 部署新的建筑物&#xff08;一般是部署基地车时说的&#xff09;。 2. Loading 等待。&#xff08;正在进行&#xff09; 3. Construction complete 建筑完成。 4. On hold 等待。&#xff08;暂停进行&#xff09; 5. Canceled 取消。 6. Ca…...