什么情况下,C#需要手动进行资源分配和释放?什么又是非托管资源?
扩展:如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?-CSDN博客
托管资源的回收有GC自动触发,而非托管资源需要手动释放。
在 C# 中,非托管资源是指那些不由 CLR(公共语言运行时)直接管理的资源,需要开发者手动进行分配和释放,常见的非托管资源包括以下几类:
操作系统资源
- 文件句柄:当使用
System.IO.FileStream
等类打开一个文件时,就会获取一个文件句柄。文件句柄是操作系统用于跟踪打开文件的一种资源,它允许程序对文件进行读取、写入等操作。如果程序打开了大量文件而没有正确关闭文件句柄,可能会导致系统资源耗尽,其他程序无法打开文件。 - 网络连接句柄:在进行网络编程时,如使用
System.Net.Sockets.Socket
类建立网络连接,会获取网络连接句柄。这些句柄用于标识与远程主机的连接,程序通过它们来发送和接收数据。如果连接使用完毕后没有关闭连接句柄,不仅会导致网络资源浪费,还可能影响系统的网络性能,甚至导致连接数达到上限,无法建立新的连接。 - 进程和线程句柄:当使用
System.Diagnostics.Process
类启动一个新进程,或者通过线程相关的 API 创建线程时,会获得进程句柄或线程句柄。这些句柄用于对进程或线程进行管理和控制,如获取进程状态、等待线程结束等。如果不正确地释放这些句柄,可能会导致系统中存在大量无用的句柄,影响系统的资源管理和性能。
图形资源
- GDI + 对象:在进行图形绘制和图像处理时,经常会使用到 GDI+(图形设备接口)对象,如
System.Drawing.Bitmap
、System.Drawing.Graphics
等。这些对象用于表示图像、画笔、字体等图形资源,它们在内存中占用一定的空间,并且与底层的图形设备相关联。如果在使用完这些对象后不释放资源,可能会导致内存泄漏和图形资源的浪费,影响图形界面的性能和稳定性。 - DirectX 资源:在开发游戏或其他需要高性能图形处理的应用程序时,可能会使用 DirectX 库。DirectX 中的资源,如纹理、顶点缓冲、索引缓冲等,都是非托管资源。这些资源需要通过特定的 API 进行创建和释放,如果不及时释放,会导致显卡内存泄漏,影响游戏的运行性能,甚至可能导致程序崩溃。
数据库连接资源
- 数据库连接对象:当使用ADO.NET等技术连接数据库时,会创建数据库连接对象,如
SqlConnection
(用于 SQL Server 数据库)、OracleConnection
(用于 Oracle 数据库)等。这些连接对象负责与数据库建立连接,并通过它们执行 SQL 语句、获取数据等操作。数据库连接是一种有限的资源,如果在使用完毕后没有关闭连接,会导致数据库连接池中的连接数量不断增加,最终可能耗尽数据库的连接资源,使其他应用程序无法连接到数据库。 - 数据库事务对象:在进行数据库事务处理时,会创建数据库事务对象,用于管理一组相关的数据库操作,确保它们要么全部成功提交,要么全部回滚。事务对象在执行过程中会占用一定的数据库资源,如果事务处理完成后没有正确释放事务对象,可能会导致数据库资源被长时间占用,影响数据库的并发性能和整体运行效率。
其他非托管资源
- COM 对象:C# 程序有时可能需要与 COM(组件对象模型)组件进行交互,通过
System.Runtime.InteropServices.Marshal
类等方式来调用 COM 对象的方法和属性。COM 对象是基于非托管代码实现的,在使用完 COM 对象后,需要通过特定的方式释放 COM 对象占用的资源,否则会导致 COM 资源泄漏,影响系统的稳定性和性能。 - 自定义非托管资源:在某些特定的场景下,开发者可能会使用一些非托管的第三方库或自己编写非托管代码来实现特定的功能,这些非托管代码所使用的资源也属于非托管资源。例如,使用 C++ 编写的动态链接库(DLL)中的资源,或者与特定硬件设备交互的驱动程序所使用的资源等。对于这些自定义的非托管资源,开发者需要根据相应的文档和规范来正确地分配和释放资源,以确保程序的正常运行和资源的有效利用。
相关文章:

什么情况下,C#需要手动进行资源分配和释放?什么又是非托管资源?
扩展:如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?-CSDN博客 托管资源的回收有GC自动触发,而非托管资源需要手动释放。 在 C# 中,非托管资源是指那些不由 CLR(…...

LeetCode 2909. 元素和最小的山形三元组 II
**### LeetCode 2909. 元素和最小的山形三元组 II 问题描述 给定一个下标从 0 开始的整数数组 nums,我们需要找到一个“山形三元组”(i, j, k)满足以下条件: i < j < knums[i] < nums[j] 且 nums[k] < nums[j] 并…...

搬迁至bilibili声明
我将搬迁到bilibili ,用户名:北苏清风 在这个用户名上的文章部分将出自csdn的这个账号,均属于本人原创...

【周易哲学】生辰八字入门讲解(八)
😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文讲解【周易哲学】生辰八字入门讲解,期待与你一同探索、学习、进步,一起卷起来叭! 目录 一、六亲女命六亲星六亲宫位相互关系 男命六亲星…...

复制粘贴小工具——Ditto
在日常工作中,复制粘贴是常见的操作,但Windows系统自带的剪贴板功能较为有限,只能保存最近一次的复制记录,这对于需要频繁复制粘贴的用户来说不太方便。今天,我们介绍一款开源、免费且功能强大的剪贴板增强工具——Dit…...

3、从langchain到rag
文章目录 本文介绍向量和向量数据库向量向量数据库 索引开始动手实现rag加载文档数据并建立索引将向量存放到向量数据库中检索生成构成一条链 本文介绍 从本节开始,有了上一节的langchain基础学习,接下来使用langchain实现一个rag应用,并稍微…...

稀疏进化训练:机器学习优化算法中的高效解决方案
稀疏进化训练:机器学习优化算法中的高效解决方案 稀疏进化训练:机器学习优化算法中的高效解决方案引言第一部分:背景与动机1.1 传统优化算法的局限性1.2 进化策略的优势1.3 稀疏性的重要性 第二部分:稀疏进化训练的核心思想2.1 稀…...

10 Flink CDC
10 Flink CDC 1. CDC是什么2. CDC 的种类3. 传统CDC与Flink CDC对比4. Flink-CDC 案例5. Flink SQL 方式的案例 1. CDC是什么 CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数…...

【LeetCode 刷题】回溯算法-子集问题
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法子集问题相关的题目解析。 文章目录 78.子集90.子集II 78.子集 题目链接 class Solution:def subsets(self, nums: List[int]) -> List[List[int]]:res, path [], []def dfs(start: int) ->…...

OpenCV 版本不兼容导致的问题
问题和解决方案 今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取 """ cap cv2.VideoCapture(RTSP_URL) print("链接视频流完成") while True:ret, frame cap.rea…...

低成本、高附加值,具有较强的可扩展性和流通便利性的行业
目录 虚拟资源类 1. 网课教程 2. 设计素材 3. 软件工具 服务类 1. 写作服务 2. 咨询顾问 3. 在线教育 4. 社交媒体管理 虚拟资源类 1. 网课教程 特点:高附加值,可复制性强,市场需求大。 执行流程: 选择领域:…...

DirectShow过滤器开发-读视频文件过滤器(再写)
下载本过滤器DLL 本过滤器读取视频文件输出视频流和音频流。流类型由文件决定。已知可读取的文件格式有:AVI,ASF,MOV,MP4,MPG,WMV。 过滤器信息 过滤器名称:读视频文件 过滤器GUID:…...

代码练习2.3
终端输入10个学生成绩,使用冒泡排序对学生成绩从低到高排序 #include <stdio.h>void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {// 交换 arr[j] 和 arr[j1]int temp arr[…...

基于 Redis GEO 实现条件分页查询用户附近的场馆列表
🎯 本文档详细介绍了如何使用Redis GEO模块实现场馆位置的存储与查询,以支持“附近场馆”搜索功能。首先,通过微信小程序获取用户当前位置,并将该位置信息与场馆的经纬度数据一同存储至Redis中。利用Redis GEO高效的地理空间索引能…...

【大数据技术】案例01:词频统计样例(hadoop+mapreduce+yarn)
词频统计(hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 在阅读本文前,请确保已经阅读过以上两篇文章,成功搭建了Hadoop+MapReduce+Yarn的大数据集群环境。 写在前面 Wo…...

Selenium 使用指南:从入门到精通
Selenium 使用指南:从入门到精通 Selenium 是一个用于自动化 Web 浏览器操作的强大工具,广泛应用于自动化测试和 Web 数据爬取中。本文将带你从入门到精通地掌握 Selenium,涵盖其基本操作、常用用法以及一个完整的图片爬取示例。 1. 环境配…...

笔试-排列组合
应用 一个长度为[1, 50]、元素都是字符串的非空数组,每个字符串的长度为[1, 30],代表非负整数,元素可以以“0”开头。例如:[“13”, “045”,“09”,“56”]。 将所有字符串排列组合,拼起来组成…...

Java序列化详解
1 什么是序列化、反序列化 在Java编程实践中,当我们需要持久化Java对象,比如把Java对象保存到文件里,或是在网络中传输Java对象时,序列化机制就发挥着关键作用。 序列化:指的是把数据结构或对象转变为可存储、可传输的…...

ChatGPT与GPT的区别与联系
ChatGPT 和 GPT 都是基于 Transformer 架构的语言模型,但它们有不同的侧重点和应用。下面我们来探讨一下它们的区别与联系。 1. GPT(Generative Pre-trained Transformer) GPT 是一类由 OpenAI 开发的语言模型,基于 Transformer…...

MySQL入门 – CRUD基本操作
MySQL入门 – CRUD基本操作 Essential CRUD Manipulation to MySQL Database By JacksonML 本文简要介绍操作MySQL数据库的基本操作,即创建(Create), 读取(Read), 更新(Update)和删除(Delete)。 基于数据表的关系型…...

Redis背景介绍
⭐️前言⭐️ 本文主要做Redis相关背景介绍,包括核心能力、重要特性和使用场景。 🍉欢迎点赞 👍 收藏 ⭐留言评论 🍉博主将持续更新学习记录收获,友友们有任何问题可以在评论区留言 🍉博客中涉及源码及博主…...

PPT演示设置:插入音频同步切换播放时长计算
PPT中插入音频&同步切换&放时长计算 一、 插入音频及音频设置二、设置页面切换和音频同步三、播放时长计算 一、 插入音频及音频设置 1.插入音频:点击菜单栏插入-音频-选择PC上的音频(已存在的音频)或者录制音频(现场录制…...

DIFY源码解析
偶然发现Github上某位大佬开源的DIFY源码注释和解析,目前还处于陆续不断更新地更新过程中,为大佬的专业和开源贡献精神点赞。先收藏链接,后续慢慢学习。 相关链接如下: DIFY源码解析...

[权限提升] Wdinwos 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权
关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01:Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的,所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…...

【算法】回溯算法专题② ——组合型回溯 + 剪枝 python
目录 前置知识进入正题小试牛刀实战演练总结 前置知识 【算法】回溯算法专题① ——子集型回溯 python 进入正题 组合https://leetcode.cn/problems/combinations/submissions/596357179/ 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以…...

LeetCode:121.买卖股票的最佳时机1
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:121.买卖股票的最佳时机1 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票…...

pytorch生成对抗网络
人工智能例子汇总:AI常见的算法和例子-CSDN博客 生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器࿰…...

Visual Studio Code应用本地部署的deepseek
1.打开Visual Studio Code,在插件中搜索continue,安装插件。 2.添加新的大语言模型,我们选择ollama. 3.直接点connect,会链接本地下载好的deepseek模型。 参看上篇文章:deepseek本地部署-CSDN博客 4.输入需求生成可用…...

用 HTML、CSS 和 JavaScript 实现抽奖转盘效果
顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域,周围八个格子分别放置了不同的奖品名称,中间是一个 “开始抽奖” 的按钮。点击按钮后,抽奖区域的格子会快速滚动,颜色不断变化…...

Skewer v0.2.2安装与使用-生信工具43
01 Skewer 介绍 Skewer(来自于 SourceForge)实现了一种基于位掩码的 k-差异匹配算法,专门用于接头修剪,特别设计用于处理下一代测序(NGS)双端序列。 fastp安装及使用-fastp v0.23.4(bioinfoma…...