当前位置: 首页 > news >正文

深入解析Python机器学习库Scikit-Learn的应用实例

深入解析Python机器学习库Scikit-Learn的应用实例

随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其中,Scikit-Learn作为Python中一个重要的机器学习库,包含了许多常用的机器学习算法和工具,可用于数据挖掘、数据分析和预测建模等应用场景。本文将深入解析Python机器学习库Scikit-Learn的应用实例,帮助读者全面理解Scikit-Learn库的功能和使用方法。

一、Scikit-Learn库简介

什么是Scikit-Learn

英文原文:Scikit-Learn)是一个基于Python语言的机器学习库,建立在NumPy、SciPy和Matplotlib库的基础之上。它提供了各种机器学习算法和工具,涵盖了监督学习、无监督学习和数据预处理等功能,能够帮助用户快速构建机器学习模型。Scikit-Learn具有简单、高效、开源的特点,已成为众多数据科学家和机器学习工程师首选的机器学习库之一。

的特点

简单易用**:Scikit-Learn提供了简洁一致的API接口,易于上手和使用。

丰富的算法库**:涵盖了从经典的SVM、决策树到深度学习的多种机器学习算法。

高效的数据处理工具**:提供了数据预处理、特征抽取、特征选择等功能,方便用户进行数据清洗和整理。

二、Scikit-Learn的应用实例

数据预处理

数据预处理是机器学习中至关重要的一步,它包括数据清洗、特征抽取、特征选择等操作。Scikit-Learn提供了丰富的数据预处理工具,以下是一个简单的数据预处理示例:

创建一组样本数据

使用preprocessing库中的scale函数对数据进行标准化处理

在上面的示例中,我们使用preprocessing库的scale函数对数据进行了标准化处理,使得每个特征的均值为0,方差为1。这样做有助于加快模型收敛速度,提高模型的准确性。

模型训练与预测

在机器学习领域,模型的训练与预测是核心步骤。Scikit-Learn提供了众多经典的机器学习算法,包括线性回归、逻辑回归、支持向量机、决策树等。以下是一个简单的线性回归训练与预测示例:

创建一组训练数据

创建线性回归模型

训练模型

进行预测

在上述示例中,我们使用LinearRegression模型对训练数据进行了训练,然后对新样本进行了预测。这展示了Scikit-Learn在模型训练与预测方面的强大功能。

模型评估

模型的评估是机器学习中至关重要的一环,它能够帮助我们了解模型的性能并做出相应的调整。Scikit-Learn提供了丰富的模型评估工具,包括交叉验证、学习曲线、混淆矩阵等。以下是一个简单的模型评估示例:

创建一组样本数据

划分训练集和测试集

创建KNN分类器模型

进行预测

计算准确率

在上述示例中,我们使用KNN分类器对数据进行了训练,并且使用了交叉验证对模型进行了评估。这展示了Scikit-Learn在模型评估方面的强大功能。

三、结语

通过以上实例,我们深入解析了Python机器学习库Scikit-Learn的应用方法。作为一款功能丰富且易于上手的机器学习库,Scikit-Learn在数据预处理、模型训练与预测、模型评估等方面都提供了强大的工具支持。希望本文的介绍能够帮助读者更好地理解和应用Scikit-Learn,进一步提升机器学习模型的构建能力和应用水平。

标签:Python、机器学习、Scikit-Learn、数据预处理、模型训练、模型评估



喜欢的朋友记得点赞、收藏、关注哦!!!

相关文章:

深入解析Python机器学习库Scikit-Learn的应用实例

深入解析Python机器学习库Scikit-Learn的应用实例 随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其…...

专业的定制版软件,一键操作,无限使用

今天给大家介绍一个专业的PDF转word的小软件,软件只有5.5M。非常小,而且没有文档大小的限制,可以随意使用。 PDFtu PDF转word 软件第一次使用需要安装一下。 安装好之后,我们就能在桌面找到对应的图标,打开就能直接使…...

小程序-基础加强

前言 这一节把基础加强讲完 1. 导入需要用到的小程序项目 2. 初步安装和使用vant组件库 这里还可以扫描二维码 其中步骤四没什么用 右键选择最后一个 在开始之前,我们的项目根目录得有package.json 没有的话,我们就初始化一个 但是我们没有npm这个…...

pytorch实现基于Word2Vec的词嵌入

PyTorch 实现 Word2Vec(Skip-gram 模型) 的完整代码,使用 中文语料 进行训练,包括数据预处理、模型定义、训练和测试。 1. 主要特点 支持中文数据,基于 jieba 进行分词 使用 Skip-gram 进行训练,适用于小数…...

流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码

一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWS EMR上的大数据查询引擎。在AWS EMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还…...

鸿蒙 循环控制 简单用法

效果 简单使用如下: class Item {id: numbername: stringprice: numberimg: stringdiscount: numberconstructor(id: number, name: string, price: number, img: string, discount: number) {this.id idthis.name namethis.price pricethis.img imgthis.discou…...

四、GPIO中断实现按键功能

4.1 GPIO简介 输入输出(I/O)是一个非常重要的概念。I/O泛指所有类型的输入输出端口,包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO(General-Purpose Input/Output)则是一个常见的术语&#xff0c…...

Linux安装zookeeper

1, 下载 Apache ZooKeeperhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apa…...

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(二)

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:贪心算法篇–CSDN博客 文章目录 前言例题1.买卖股票的最佳时机2.买卖股票的最佳时机23.k次取…...

007 JSON Web Token

文章目录 https://doc.hutool.cn/pages/jwt/#jwt%E4%BB%8B%E7%BB%8D JWT是一种用于双方之间安全传输信息的简洁的、URL安全的令牌标准。这个标准由互联网工程任务组(IETF)发表,定义了一种紧凑且自包含的方式,用于在各方之间作为JSON对象安全地传输信息。…...

Windsurf cursor vscode+cline 与Python快速开发指南

Windsurf简介 Windsurf是由Codeium推出的全球首个基于AI Flow范式的智能IDE,它通过强大的AI助手功能,显著提升开发效率。Windsurf集成了先进的代码补全、智能重构、代码生成等功能,特别适合Python开发者使用。 Python环境配置 1. Conda安装…...

将markdown文件和LaTex公式转为word

通义千问等大模型生成的回答多数是markdown类型的,需要将他们转为Word文件 一 pypandoc 介绍 1. 项目介绍 pypandoc 是一个用于 pandoc 的轻量级 Python 包装器。pandoc 是一个通用的文档转换工具,支持多种格式的文档转换,如 Markdown、HTM…...

grpc 和 http 的区别---二进制vsJSON编码

gRPC 和 HTTP 是两种广泛使用的通信协议,各自适用于不同的场景。以下是它们的详细对比与优势分析: 一、核心特性对比 特性gRPCHTTP协议基础基于 HTTP/2基于 HTTP/1.1 或 HTTP/2数据格式默认使用 Protobuf(二进制)通常使用 JSON/…...

C#面向对象(封装)

1.什么是封装? C# 封装 封装 被定义为“把一个或多个项目封闭在一个物理的或者逻辑的包中”。 在面向对象程序设计方法论中,封装是为了防止对实现细节的访问。 抽象和封装是面向对象程序设计的相关特性。 抽象允许相关信息可视化,封装则使开发者实现所…...

kamailio-kamctl monitor解释

这段输出是 Kamailio 服务器的运行时信息和统计数据的摘要。以下是对每个部分的详细解释: 1. Kamailio Runtime Details cycle #: 3: 表示 Kamailio 的主循环已经运行了 3 个周期。Kamailio 是一个事件驱动的服务器,主循环用于处理事件和请求。if const…...

39. I2C实验

一、IIC协议详解 1、ALPHA开发板上有个AP3216C,这是一个IIC接口的器件,这是一个环境光传感器。AP3216C连接到了I2C1上: I2C1_SCL: 使用的是UART4_TXD这个IO,复用位ALT2 I2C1_SDA: 使用的是UART4_RXD这个IO。复用为ALT2 2、I2C分为SCL和SDA&…...

GPIO配置通用输出,推挽输出,开漏输出的作用,以及输出上下拉起到的作用

通用输出说明: ①输出原理: 对输出数据寄存器的对应位写0 或 1,就可以控制对应编号的IO口输出低/高电平 ②输出类型 推挽输出:IO口可以输出高电平,也可以输出低电平 开漏输出:IO口只能输出低电平 所以…...

Spring AOP 入门教程:基础概念与实现

目录 第一章:AOP概念的引入 第二章:AOP相关的概念 1. AOP概述 2. AOP的优势 3. AOP的底层原理 第三章:Spring的AOP技术 - 配置文件方式 1. AOP相关的术语 2. AOP配置文件方式入门 3. 切入点的表达式 4. AOP的通知类型 第四章&#x…...

DeepSeek 核心技术全景解析

DeepSeek 核心技术全景解析:突破性创新背后的设计哲学 DeepSeek的创新不仅仅是对AI基础架构的改进,更是一场范式革命。本文将深入剖析其核心技术,探讨 如何突破 Transformer 计算瓶颈、如何在 MoE(Mixture of Experts&#xff09…...

90,【6】攻防世界 WEB Web_php_unserialize

进入靶场 进入靶场 <?php // 定义一个名为 Demo 的类 class Demo { // 定义一个私有属性 $file&#xff0c;默认值为 index.phpprivate $file index.php;// 构造函数&#xff0c;当创建类的实例时会自动调用// 接收一个参数 $file&#xff0c;用于初始化对象的 $file 属…...

实现网站内容快速被搜索引擎收录的方法

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/6.html 实现网站内容快速被搜索引擎收录&#xff0c;是网站运营和推广的重要目标之一。以下是一些有效的方法&#xff0c;可以帮助网站内容更快地被搜索引擎发现和收录&#xff1a; 一、确…...

WSL2中安装的ubuntu搭建tftp服务器uboot通过tftp下载

Windows中安装wsl2&#xff0c;wsl2里安装ubuntu。 1. Wsl启动后 1&#xff09;Windows下ip ipconfig 以太网适配器 vEthernet (WSL (Hyper-V firewall)): 连接特定的 DNS 后缀 . . . . . . . : IPv4 地址 . . . . . . . . . . . . : 172.19.32.1 子网掩码 . . . . . . . .…...

机器学习优化算法:从梯度下降到Adam及其变种

机器学习优化算法&#xff1a;从梯度下降到Adam及其变种 引言 最近deepseek的爆火已然说明&#xff0c;在机器学习领域&#xff0c;优化算法是模型训练的核心驱动力。无论是简单的线性回归还是复杂的深度神经网络&#xff0c;优化算法的选择直接影响模型的收敛速度、泛化性能…...

[SAP ABAP] 静态断点的使用

在 ABAP 编程环境中&#xff0c;静态断点通过关键字BREAK-POINT实现&#xff0c;当程序执行到这一语句时&#xff0c;会触发调试器中断程序的运行&#xff0c;允许开发人员检查当前状态并逐步跟踪后续代码逻辑 通常情况下&#xff0c;在代码的关键位置插入静态断点可以帮助开发…...

129.求根节点到叶节点数字之和(遍历思想)

Problem: 129.求根节点到叶节点数字之和 文章目录 题目描述思路复杂度Code 题目描述 思路 遍历思想(利用二叉树的先序遍历) 直接利用二叉树的先序遍历&#xff0c;将遍历过程中的节点值先利用字符串拼接起来遇到根节点时再转为数字并累加起来&#xff0c;在归的过程中&#xf…...

NCCL、HCCL、通信、优化

文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理&#xff01;通信实现方式&#xff1a;机器内通信、机器间通信通信实现方式&#xff1a;通讯协调通信实现方式&#xff1a;机器内通信&#xff1a;PCIe通信实现方式&#xff1a;机器内通信&#xff1a;NVLink通信实现…...

unity学习21:Application类与文件存储的位置

目录 1 unity是一个跨平台的引擎 1.1 使用 Application类&#xff0c;去读写文件 1.2 路径特点 1.2.1 相对位置/相对路径&#xff1a; 1.2.2 固定位置/绝对路径&#xff1a; 1.3 测试方法&#xff0c;仍然挂一个C#脚本在gb上 2 游戏数据文件夹路径&#xff08;只读&…...

17 一个高并发的系统架构如何设计

高并发系统的理解 第一:我们设计高并发系统的前提是该系统要高可用&#xff0c;起码整体上的高可用。 第二:高并发系统需要面对很大的流量冲击&#xff0c;包括瞬时的流量和黑客攻击等 第三:高并发系统常见的需要考虑的问题&#xff0c;如内存不足的问题&#xff0c;服务抖动的…...

Spring Boot 实例解析:配置文件

SpringBoot 的热部署&#xff1a; Spring 为开发者提供了一个名为 spring-boot-devtools 的模块来使用 SpringBoot 应用支持热部署&#xff0c;提高开发者的效率&#xff0c;无需手动重启 SpringBoot 应用引入依赖&#xff1a; <dependency> <groupId>org.springfr…...

pytorch图神经网络处理图结构数据

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 图神经网络&#xff08;Graph Neural Networks&#xff0c;GNNs&#xff09;是一类能够处理图结构数据的深度学习模型。图结构数据由节点&#xff08;vertices&#xff09;和边&#xff08;edges&#xff09;组成&a…...