当前位置: 首页 > news >正文

个人网站需要多大空间/网站设计模板网站

个人网站需要多大空间,网站设计模板网站,做网站 做手机app要学什么软件,宁波做网站安装ollama 因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报 所以ollama使用镜像方式进行部署, 拉取镜像ollama/ollama 启动命令 docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 查看ollama 是否启动…

安装ollama

因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报

所以ollama使用镜像方式进行部署, 拉取镜像ollama/ollama

启动命令

docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

查看ollama 是否启动成功,Ollama 没有用户界面,在后台运行。

打开浏览器,输入 “http://xx:11434/”,显示 “Ollama is running”。

docker exec -it ollama ollama list

deepseek-r1 目前有7b, 32b, 70b, 671b 多个版本, 考虑到下载时间目前只下载最大70b的模型

应该说Deepseek 底层应该是很牛,两张40卡都能跑70B参数的模型

安装openwebui

Open-webui 则提供直观的 Web 用户界面来与 Ollama 平台进行交互。直接使用docker进行部署

docker run -d --privileged -p 3000:8080 \--add-host=host.docker.internal:host-gateway \-v /data/openwebui:/app/backend/data \-e TRANSFORMERS_CACHE=/app/backend/data/huggingface/cache \-e HF_DATASETS_CACHE=/app/backend/data/huggingface/datasets \-e HF_ENDPOINT=https://hf-mirror.com \--name open-webui --restart always \ghcr.io/open-webui/open-webui:main

打开3000端口选择70b的模型

使用下deepseek的深度思考模式

下面演示下如何对DeepSeek-V1:7b模型进行微调,让模型成为一位算命大师

微调代码参考self-llm/models/DeepSeek at master · datawhalechina/self-llm · GitHub

R1 和 V1 的区别集中在 优化方向(速度、领域、资源)或 迭代阶段(V1 为初版,R1 为改进版)模型微调通过 peft 库来实现模型的 LoRA 微调。peft 库是 huggingface 开发的第三方库,其中封装了包括 LoRA、Adapt Tuning、P-tuning 等多种高效微调方法,可以基于此便捷地实现模型的 LoRA 微调。

微调数据格式化

准备一份微调数据

instruction :用户指令,告知模型其需要完成的任务;

input :用户输入,是完成用户指令所必须的输入内容;

output :模型应该给出的输出。

如果你的 JSON 文件包含多个 JSON 对象而不是一个有效的 JSON 数组,Pandas 将无法处理。例如,以下格式是不正确的:

{"key1": "value1"}
{"key2": "value2"}

转化下该格式到正确json格式

import jsoninput_file = 'data.json'
output_file = 'corrected_data.json'json_objects = []with open(input_file, 'r', encoding='utf-8') as f:for line in f:line = line.strip()  # 去除前后空白if line:  # 确保行不为空try:json_objects.append(json.loads(line))except json.JSONDecodeError as e:print(f"Error decoding JSON: {e} - Line: {line}")if json_objects:with open(output_file, 'w', encoding='utf-8') as f:json.dump(json_objects, f, ensure_ascii=False, indent=4)print(f"Corrected JSON format has been saved to {output_file}.")

后面训练的时候会使用,是从一个 JSON 文件中读取数据,将其转换为 Pandas DataFrame,然后进一步转换为 Hugging Face 的 Dataset 对象。接着,它对这个数据集应用一个名为 process_func 的处理函数,最终返回一个经过处理的 tokenized 数据集,返回处理后的数据集 tokenized_id,通常是一个包含 token ID 或其他处理结果的新数据集。

def get_tokenized_id(json_file):df = pd.read_json(json_file)ds = Dataset.from_pandas(df)# 处理数据集tokenized_id = ds.map(process_func, remove_columns=ds.column_names)# print(tokenized_id)return tokenized_id

安装了huggingface_cli库,可以使用进行安装。

pip install huggingface-cli

修改下载源:

export HF_ENDPOINT="https://hf-mirror.com"

下载deepseek-vl-7b-chat 到models文件夹

huggingface-cli download deepseek-ai/deepseek-vl-7b-chat --local-dir ./models

通过加载DeepSeek-7B-chat 模型完成微调数据的初始化,以保证微调时数据的一致性。

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained('./deepseek-ai/deepseek-llm-7b-chat/', use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right' # padding在右边'''
Lora训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉Pytorch模型训练流程的同学会知道,
我们一般需要将输入文本编码为input_ids,将输出文本编码为labels,编码之后的结果都是多维的向量。
'''

设置lora相关的参数

config = LoraConfig(task_type=TaskType.CAUSAL_LM, # 模型类型# 需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False, # False:训练模式 True:推理模式r=8, # Lora 秩lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理lora_dropout=0.01
)
各模块含义

这些名称对应 Transformer 模型中的关键投影层(Projection Layers):

  • q_projk_projv_proj:
    自注意力机制中的 查询(Query)、键(Key)、值(Value) 的投影矩阵,用于生成注意力权重。

  • o_proj:
    自注意力机制的 输出投影矩阵,将注意力计算结果映射回原始维度。

  • gate_projup_projdown_proj:
    Transformer 中 MLP 层(多层感知机)的投影矩阵:

    • gate_proj: 门控投影(用于激活函数前的门控控制,如 SwiGLU)。

    • up_proj 和 down_proj: 上下投影矩阵(用于特征维度的升维和降维)。


2. 为什么选择这些层?

这些层是模型的核心计算单元,对模型行为影响显著:

  • 注意力层:控制信息交互(如关注哪些词);

  • MLP 层:负责非线性特征变换。
    对它们进行微调,能以较少参数高效调整模型行为。


3. 底层原理

其中:

  • BA是低秩适配器,仅训练 A和 B;

  • 原始权重 W 冻结不更新,避免破坏预训练知识。

常见配置策略

1. 选择哪些层?
  • 通用场景:覆盖所有注意力层 (q_projk_projv_projo_proj) 和 MLP 层 (gate_projup_projdown_proj)。

  • 轻量化微调:仅选择注意力层(减少参数量)。

  • 任务相关:根据任务特性调整(如代码生成任务可能更关注 MLP 层)。

2. 不同模型的层名差异
  • Llama、Mistral: 使用 q_projk_projv_projo_proj 等命名。

  • GPT-2: 可能命名为 c_attn(合并 Q/K/V 投影)或 c_proj(输出投影)。

  • BERT: 通常为 querykeyvaluedense

自定义 TrainingArguments 参数这里就简单说几个常用的。

output_dir:模型的输出路径
per_device_train_batch_size:顾名思义 batch_size
gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
logging_steps:多少步,输出一次log
num_train_epochs:顾名思义 epoch
fp16=True, # 开启半精度浮点数训练,减少显存使用
save_total_limit=1, # 限制保存的检查点数量,节省磁盘空间
gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()

配置如下

args = TrainingArguments(output_dir="./output/DeepSeek_full",per_device_train_batch_size=8,  # 每个设备上的 batch sizegradient_accumulation_steps=2,  # 梯度累积步数,减少显存占用logging_steps=10, # 记录日志的步数num_train_epochs=3,  # 训练轮数save_steps=100,  # 保存检查点的步数learning_rate=1e-4, # 学习率fp16=True,  # 开启半精度浮点数训练,减少显存使用save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间save_on_each_node=True,gradient_checkpointing=True#logging_dir="./logs"  # 设置日志文件夹
)

deepseek 微调训练代码

# -*- coding: utf-8 -*-from deepseek_vl.models import MultiModalityCausalLM
from peft import LoraConfig, TaskType, get_peft_model
from tokenizers import Tokenizer
from transformers import Trainer, TrainingArguments, AutoModelForCausalLM, GenerationConfig, \DataCollatorForSeq2Seqfrom tokenizer_text import get_tokenized_idtokenizer = Tokenizer.from_file("./models/tokenizer.json")
# tokenizer = AutoTokenizer.from_pretrained('./models/', use_fast=False, trust_remote_code=True)
# tokenizer.padding_side = 'right' # padding在右边model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True)
print('model', model)
# model = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True, torch_dtype=torch.half, device_map="auto")
#model.generation_config = GenerationConfig.from_pretrained('./models/')
#model.generation_config.pad_token_id = model.generation_config.eos_token_id# 开启梯度
#model.enable_input_require_grads()
config = LoraConfig(task_type=TaskType.CAUSAL_LM,  # 任务类型,常用于因果语言模型target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],inference_mode=False,  # 训练模式r=8,  # LoRA 矩阵的秩,控制训练参数量,常用值为 4 或 8lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理:控制更新幅度的超参数lora_dropout=0.1  # Dropout 比例,防止过拟合
)model = get_peft_model(model, config)# 确保所有需要的参数启用梯度
for name, param in model.named_parameters():if param.requires_grad:print(f"Parameter {name} is trainable.")else:print(f"Parameter {name} is not trainable will set.")param.requires_grad = True'''
自定义 TrainingArguments 参数
TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。
output_dir:模型的输出路径
per_device_train_batch_size:顾名思义 batch_size
gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
logging_steps:多少步,输出一次log
num_train_epochs:顾名思义 epoch
fp16=True,  # 开启半精度浮点数训练,减少显存使用
save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间
gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()
'''args = TrainingArguments(output_dir="./output/DeepSeek_full",per_device_train_batch_size=8,  # 每个设备上的 batch sizegradient_accumulation_steps=2,  # 梯度累积步数,减少显存占用logging_steps=10,  # 记录日志的步数num_train_epochs=3,  # 训练轮数save_steps=100,  # 保存检查点的步数learning_rate=1e-4,  # 学习率fp16=True,  # 开启半精度浮点数训练,减少显存使用save_total_limit=1,  # 限制保存的检查点数量,节省磁盘空间save_on_each_node=True,gradient_checkpointing=True# logging_dir="./logs"  # 设置日志文件夹
)trainer = Trainer(model=model,args=args,train_dataset=get_tokenized_id('./data.json'),data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)trainer.train()# 直接合并模型开始。。。。。
# 将 adapter 合并进模型(去除 adapter 依赖)
model = model.merge_and_unload()
model.save_pretrained("./output/DeepSeek_full")
tokenizer.save_pretrained("./output/DeepSeek_full")# 直接合并模型结束。。。。。text = "现在你要扮演我碰到一位神秘的算命大师, 你是谁?今天我的事业运道如何?"inputs = tokenizer(f"User: {text}\n\n", return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

上面用到的tokenizer 相关代码

import tokenizer
import pandas as pd
from datasets import Datasetfrom transformers import AutoTokenizer# 加载分词器
tokenizer = AutoTokenizer.from_pretrained('./deepseek-llm-7b/', use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right' # padding在右边'''
Lora训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉Pytorch模型训练流程的同学会知道,
我们一般需要将输入文本编码为input_ids,将输出文本编码为labels,编码之后的结果都是多维的向量。
'''def process_func(example):MAX_LENGTH = 384  # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性input_ids, attention_mask, labels = [], [], []instruction = tokenizer(f"User: {example['instruction'] + example['input']}\n\n",add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokensresponse = tokenizer(f"Assistant: {example['output']}<|end▁of▁sentence|>", add_special_tokens=False)input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]if len(input_ids) > MAX_LENGTH:  # 做一个截断input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}def get_tokenized_id(json_file):df = pd.read_json(json_file)ds = Dataset.from_pandas(df)# 处理数据集tokenized_id = ds.map(process_func, remove_columns=ds.column_names)# print(tokenized_id)return tokenized_id

由于deepseek-v1是多模态模型,需要安装deepseek_vl 模块

git clone https://github.com/deepseek-ai/DeepSeek-VL
cd DeepSeek-VLpip install -e .

加载模型时转为model: MultiModalityCausalLM,打印下模型结构

MultiModalityCausalLM(
  (vision_model): HybridVisionTower(
    (vision_tower_high): CLIPVisionTower(
      (vision_tower): ImageEncoderViT(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
        )
        (blocks): ModuleList(
          (0-11): 12 x Block(
            (norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=768, out_features=2304, bias=True)
              (proj): Linear(in_features=768, out_features=768, bias=True)
            )
            (norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            (mlp): MLPBlock(
              (lin1): Linear(in_features=768, out_features=3072, bias=True)
              (lin2): Linear(in_features=3072, out_features=768, bias=True)
              (act): GELU(approximate='none')
            )
          )
        )
        (neck): Sequential(
          (0): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): LayerNorm2d()
          (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (3): LayerNorm2d()
        )
        (downsamples): Sequential(
          (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        )
        (neck_hd): Sequential(
          (0): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): LayerNorm2d()
          (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (3): LayerNorm2d()
        )
      )
      (image_norm): Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
    )
    (vision_tower_low): CLIPVisionTower(
      (vision_tower): VisionTransformer(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 1024, kernel_size=(16, 16), stride=(16, 16))
          (norm): Identity()
        )
        (pos_drop): Dropout(p=0.0, inplace=False)
        (patch_drop): Identity()
        (norm_pre): Identity()
        (blocks): Sequential(
          (0): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (1): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (2): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (3): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (4): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (5): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (6): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (7): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (8): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (9): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (10): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (11): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (12): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (13): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (14): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (15): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (16): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (17): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (18): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (19): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (20): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (21): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (22): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
          (23): Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (qkv): Linear(in_features=1024, out_features=3072, bias=True)
              (q_norm): Identity()
              (k_norm): Identity()
              (attn_drop): Dropout(p=0.0, inplace=False)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Identity()
            )
            (ls1): Identity()
            (drop_path1): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): Mlp(
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (act): GELU(approximate='none')
              (drop1): Dropout(p=0.0, inplace=False)
              (norm): Identity()
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (drop2): Dropout(p=0.0, inplace=False)
            )
            (ls2): Identity()
            (drop_path2): Identity()
          )
        )
        (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
        (attn_pool): AttentionPoolLatent(
          (q): Linear(in_features=1024, out_features=1024, bias=True)
          (kv): Linear(in_features=1024, out_features=2048, bias=True)
          (q_norm): Identity()
          (k_norm): Identity()
          (proj): Linear(in_features=1024, out_features=1024, bias=True)
          (proj_drop): Dropout(p=0.0, inplace=False)
          (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
          (mlp): Mlp(
            (fc1): Linear(in_features=1024, out_features=4096, bias=True)
            (act): GELU(approximate='none')
            (drop1): Dropout(p=0.0, inplace=False)
            (norm): Identity()
            (fc2): Linear(in_features=4096, out_features=1024, bias=True)
            (drop2): Dropout(p=0.0, inplace=False)
          )
        )
        (fc_norm): Identity()
        (head_drop): Dropout(p=0.0, inplace=False)
        (head): Identity()
      )
      (image_norm): Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    )
    (high_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    (low_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    (resize): Resize(size=384, interpolation=bilinear, max_size=None, antialias=True)
  )
  (aligner): MlpProjector(
    (high_up_proj): Linear(in_features=1024, out_features=2048, bias=True)
    (low_up_proj): Linear(in_features=1024, out_features=2048, bias=True)
    (layers): Sequential(
      (0): GELU(approximate='none')
      (1): Linear(in_features=4096, out_features=4096, bias=True)
    )
  )
  (language_model): LlamaForCausalLM(
    (model): LlamaModel(
      (embed_tokens): Embedding(102400, 4096)
      (layers): ModuleList(
        (0-29): 30 x LlamaDecoderLayer(
          (self_attn): LlamaAttention(
            (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (k_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (v_proj): Linear(in_features=4096, out_features=4096, bias=False)
            (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          )
          (mlp): LlamaMLP(
            (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
            (up_proj): Linear(in_features=4096, out_features=11008, bias=False)
            (down_proj): Linear(in_features=11008, out_features=4096, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): LlamaRMSNorm((4096,), eps=1e-06)
          (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-06)
        )
      )
      (norm): LlamaRMSNorm((4096,), eps=1e-06)
      (rotary_emb): LlamaRotaryEmbedding()
    )
    (lm_head): Linear(in_features=4096, out_features=102400, bias=False)
  )
)
 

开始训练,受限于资源单机单线程开启

accelerate launch --num_processes=1 --num_machines=1 train_deepseek.py

还是挺费显存的,试验受限于设备只能先进行到这里

附一段使用微调模型进行试验的代码(没有测试过)

# -*- coding: utf-8 -*-import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessorimport warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="torch.utils._pytree")# 指定合并后的模型路径
merged_model_path = "./output/DeepSeek_full"# 加载模型
# model = AutoModelForCausalLM.from_pretrained(merged_model_path, torch_dtype=torch.float16, device_map="auto")
model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained('./models/', trust_remote_code=True)
if hasattr(model, 'tie_weights'):model.tie_weights()tokenizer = AutoTokenizer.from_pretrained(merged_model_path)# 使用模型生成文本示例
input_text = '''
###重要信息-你是一个善于洞察人心的算命大师,请直接以算命大师的角度回复,注意角色不要混乱,你是算命大师,你是算命大师,你是算命大师,你会积极对用户调侃,长度20字。User:测一下我今天的运势'''inputs = tokenizer(input_text, return_tensors="pt").to("cuda")# 生成
with torch.no_grad():outputs = model.generate(**inputs,max_new_tokens=50,  # 可调整生成长度do_sample=True,top_p=0.95,temperature=0.7,num_return_sequences=1)# 解码生成的文本
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("生成的文本:", generated_text)

相关文章:

deepseek 本地化部署和小模型微调

安装ollama 因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报 所以ollama使用镜像方式进行部署&#xff0c; 拉取镜像ollama/ollama 启动命令 docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 查看ollama 是否启动…...

【Java异步编程】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…...

makailio-alias_db模块详解

ALIAS_DB 模块 作者 Daniel-Constantin Mierla micondagmail.com Elena-Ramona Modroiu ramonaasipto.com 编辑 Daniel-Constantin Mierla micondagmail.com 版权 © 2005 Voice Sistem SRL © 2008 asipto.com 目录 管理员指南 概述依赖 2.1 Kamailio 模块 2.2 外…...

文字显示省略号

多行文本溢出显示省略号...

[LeetCode] 字符串完整版 — 双指针法 | KMP

字符串 基础知识双指针法344# 反转字符串541# 反转字符串II54K 替换数字151# 反转字符串中的单词55K 右旋字符串 KMP 字符串匹配算法28# 找出字符串中第一个匹配项的下标#459 重复的子字符串 基础知识 字符串的结尾&#xff1a;空终止字符00 char* name "hello"; …...

从零开始部署Dify:后端与前端服务完整指南

从零开始部署Dify&#xff1a;后端与前端服务完整指南 一、环境准备1. 系统要求2. 项目结构 二、后端服务部署1. 中间件启动&#xff08;Docker Compose&#xff09;2. 后端环境配置3. 依赖安装与数据库迁移4. 服务启动 三、前端界面搭建1. 环境配置2. 服务启动 四、常见问题排…...

springboot中路径默认配置与重定向/转发所存在的域对象

Spring Boot 是一种简化 Spring 应用开发的框架&#xff0c;它提供了多种默认配置和方便的开发特性。在 Web 开发中&#xff0c;路径配置和请求的重定向/转发是常见操作。本文将详细介绍 Spring Boot 中的路径默认配置&#xff0c;并解释重定向和转发过程中存在的域对象。 一、…...

二叉树——429,515,116

今天继续做关于二叉树层序遍历的相关题目&#xff0c;一共有三道题&#xff0c;思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了&#xff0c;变成了N叉树&#xff0c;也就是该树每一个节点的子节点数量不确定&#xff0c;可能为2&a…...

Leetcode 3444. Minimum Increments for Target Multiples in an Array

Leetcode 3444. Minimum Increments for Target Multiples in an Array 1. 解题思路2. 代码实现 题目链接&#xff1a;3444. Minimum Increments for Target Multiples in an Array 1. 解题思路 这一题我的思路上就是一个深度优先遍历&#xff0c;考察target数组当中的每一个…...

分享半导体Fab 缺陷查看系统,平替klarity defect系统

分享半导体Fab 缺陷查看系统&#xff0c;平替klarity defect系统&#xff1b;开发了半年有余。 查看Defect Map&#xff0c;Defect image&#xff0c;分析Defect size&#xff0c;defect count trend. 不用再采用klarity defect系统&#xff08;license 太贵&#xff09; 也可以…...

Java基础——分层解耦——IOC和DI入门

目录 三层架构 Controller Service Dao ​编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理&#xff1f; 容器怎样才能提供依赖的bean对象呢&#xff1f; 三层架构 Controller 控制…...

DeepSeek-R1 本地部署教程(超简版)

文章目录 一、DeepSeek相关网站二、DeepSeek-R1硬件要求三、本地部署DeepSeek-R11. 安装Ollama1.1 Windows1.2 Linux1.3 macOS 2. 下载和运行DeepSeek模型3. 列出本地已下载的模型 四、Ollama命令大全五、常见问题解决附&#xff1a;DeepSeek模型资源 一、DeepSeek相关网站 官…...

Vue3学习笔记-模板语法和属性绑定-2

一、文本插值 使用{ {val}}放入变量&#xff0c;在JS代码中可以设置变量的值 <template><p>{{msg}}</p> </template> <script> export default {data(){return {msg: 文本插值}} } </script> 文本值可以是字符串&#xff0c;可以是布尔…...

csapp笔记3.6节——控制(1)

本节解决了x86-64如何实现条件语句、循环语句和分支语句的问题 条件码 除了整数寄存器外&#xff0c;cpu还维护着一组单个位的条件码寄存器&#xff0c;用来描述最近的算数和逻辑运算的某些属性。可检测这些寄存器来执行条件分支指令。 CF&#xff08;Carry Flag&#xff09…...

PYH与MAC的桥梁MII/MIIM

在学习车载互联网时&#xff0c;看到了一句话&#xff0c;Processor通过DMA直接存储访问与MAC之间进行数据的交互&#xff0c;MAC通过MII介质无关接口与PHY之间进行数据的交互。常见的以太网硬件结构是&#xff0c;将MAC集成进Processor芯片&#xff0c;将PHY留在Processor片外…...

国内flutter环境部署(记录篇)

设置系统环境变量 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn使用以下命令下载flutter镜像 git clone -b stable https://mirror.ghproxy.com/https://github.com/<github仓库地址>#例如flutter仓…...

选择排序_75. 颜色分类

75. 颜色分类 - 力扣&#xff08;LeetCode&#xff09; 题目不追求稳定 可以选择选择排序 这是我没看教程代码之前写的 有点复杂了 我还把元素后移了 class Solution { public:void sortColors(vector<int>& nums) {int min_num_index -1;int min_num 3;for(int i…...

C++ Primer 标准库vector

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

C# 数组和列表的基本知识及 LINQ 查询

数组和列表的基本知识及 LINQ 查询 一、基本知识二、引用命名空间声明三、数组3.1、一维数组3.2、二维数组3.3、不规则数组 Jagged Array 四、列表 List4.1、一维列表4.2、二维列表 五、数组和列表使用 LINQ的操作和运算5.1、一维 LIST 删除所有含 double.NaN 的行5.2、一维 LI…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

w191教师工作量管理系统的设计与实现

&#x1f64a;作者简介&#xff1a;多年一线开发工作经验&#xff0c;原创团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339;赠送计算机毕业设计600个选题excel文…...

Git 版本控制:基础介绍与常用操作

目录 Git 的基本概念 Git 安装与配置 Git 常用命令与操作 1. 初始化本地仓库 2. 版本控制工作流程 3. 分支管理 4. 解决冲突 5. 回退和撤销 6. 查看提交日志 前言 在软件开发过程中&#xff0c;开发者常常需要在现有程序的基础上进行修改和扩展。但如果不加以管理&am…...

讲清逻辑回归算法,剖析其作为广义线性模型的原因

1、逻辑回归算法介绍 逻辑回归(Logistic Regression)是一种广义线性回归分析模型。虽然名字里带有“回归”两字&#xff0c;但其实是分类模型&#xff0c;常用于二分类。既然逻辑回归模型是分类模型&#xff0c;为什么名字里会含有“回归”二字呢&#xff1f;这是因为其算法原…...

数据结构(1)——算法时间复杂度与空间复杂度

目录 前言 一、算法 1.1算法是什么&#xff1f; 1.2算法的特性 1.有穷性 2.确定性 3.可行性 4.输入 5.输出 二、算法效率 2.1衡量算法效率 1、事后统计方法 2、事前分析估计方法 2.2算法的复杂度 2.3时间复杂度 2.3.1定义 2.3.2大O渐进表示法 2.3.3常见时间复…...

K8s运维管理平台 - xkube体验:功能较多

目录 简介Lic安装1、需要手动安装MySQL&#xff0c;**建库**2、启动命令3、[ERROR] GetNodeMetric Fail:the server is currently unable to handle the request (get nodes.metrics.k8s.io qfusion-1) 使用总结优点优化 补充1&#xff1a;layui、layuimini和beego的详细介绍1.…...

spring源码阅读系列文章目录

对于spring认识首先要了解 spring相关概念术语&#xff0c;然后是如下的几句话牢记并反射出来&#xff1a; Bean怎么来的&#xff0c;通过BeanDefinitionBeanDefinition有Spring框架内置的&#xff0c;有手动定义或者自动配置扫描出来的&#xff08;写个Demo工程&#xff09;B…...

快速提升网站收录:利用网站新闻发布功能

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/63.html 利用网站新闻发布功能快速提升网站收录是一个有效的策略。以下是一些具体的建议&#xff0c;帮助你更好地利用这一功能&#xff1a; 一、保持新闻更新频率 搜索引擎尤其重视网站的…...

【14】WLC3504 HA配置实例

1.概述 本文档使用 Cisco WLC 3504 实现无线控制器的高可用性。这里所指的HA是指WLC设备box-to-box的冗余。换句话说,即1:1的设备冗余,其中一个 WLC 将处于Active活动状态,而第二个 WLC 将处于Standby-hot热待机状态,通过RP冗余端口持续监控活动 WLC 的运行状况。两个 WLC…...

什么是LPU?会打破全球算力市场格局吗?

在生成式AI向垂直领域纵深发展的关键节点&#xff0c;一场静默的芯片革命正在改写算力规则。Groq研发的LPU&#xff08;Language Processing Unit&#xff09;凭借其颠覆性架构&#xff0c;不仅突破了传统GPU的性能天花板&#xff0c;更通过与DeepSeek等国产大模型的深度协同&a…...

智慧物业管理系统实现社区管理智能化提升居民生活体验与满意度

内容概要 智慧物业管理系统&#xff0c;顾名思义&#xff0c;是一种将智能化技术融入社区管理的系统&#xff0c;它通过高效的手段帮助物业公司和居民更好地互动与沟通。首先&#xff0c;这个系统整合了在线收费、停车管理等功能&#xff0c;让居民能够方便快捷地完成日常支付…...