当前位置: 首页 > news >正文

Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码

Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。

Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。

特别是在特征工程和模型训练方面,Iceberg的支持使得字节跳动能够快速地增删和回填特征,加速模型迭代。通过Iceberg,字节跳动实现了高性能特征读取和高效特征调研,从而提升了机器学习模型的训练效率和效果。

此外,Iceberg还支持事务和多版本并发控制,保证了数据在并发读写过程中的一致性和完整性。这些特性使得Iceberg成为字节跳动机器学习平台中不可或缺的一部分,为企业的AI应用提供了强大的支持。

以下基于Iceberg的海量特征存储实践,结合行业通用架构设计经验,给出详细的系统设计和技术实现方案:

一、硬件配置方案

  1. 存储层配置:
  • 分布式对象存储:HDFS/S3/Ozone集群
  • 存储节点:50+节点(每节点16核/128GB/20TB HDD RAID6)
  • 元数据服务器:3节点高可用配置(32核/256GB/SSD)
  1. 计算层配置:
  • 实时计算节点:100+节点(32核/256GB/2TB NVMe)
  • 批处理节点:200+节点(64核/512GB/10TB HDD)
  • GPU训练集群:50+节点(8*V100/256GB/10TB NVMe)
  1. 网络架构:
  • 100Gbps RDMA网络
  • 存储与计算分离架构
  • 跨机房专线延迟<2ms

二、系统架构设计
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MdEjpqFM-1738556138072)(https://via.placeholder.com/800x400.png?text=Iceberg+Feature+Store+Architecture)]

  1. 分层架构:
  • 接入层:Kafka/Pulsar实时数据管道
  • 存储层:Iceberg表格式 + 对象存储
  • 计算层:Flink实时处理 + Spark批处理
  • 服务层:特征服务API + 模型训练平台
  1. 核心模块设计:
  • 元数据管理:Iceberg Catalog Service
  • 数据版本控制:Snapshot Manager
  • 特征注册中心:Feature Registry
  • 数据质量监控:Schema Validator

三、软件技术栈

  1. 核心组件:
  • 存储层:Iceberg 1.2 + Hadoop 3.3 + Alluxio 2.9
  • 计算引擎:Flink 1.16 + Spark 3.3
  • 资源调度:Kubernetes + YARN
  • 消息队列:Kafka 3.4
  1. 辅助工具:
  • 数据治理:Apache Atlas
  • 监控告警:Prometheus + Grafana
  • 工作流编排:Airflow 2.6

四、具体实现流程

  1. 实时数据写入流程:
# Flink实时写入Iceberg示例
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironmentenv = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)t_env.execute_sql("""
CREATE TABLE user_features (user_id BIGINT,feature_map MAP<STRING, DOUBLE>,proc_time TIMESTAMP(3)
) PARTITIONED BY (days(proc_time)) 
WITH ('connector' = 'iceberg','catalog-name' = 'feature_catalog','catalog-type' = 'hive','warehouse' = 'hdfs://feature-warehouse'
)""")# 从Kafka读取数据并写入Iceberg
t_env.execute_sql("""
INSERT INTO user_features
SELECT user_id, feature_map, PROCTIME() AS proc_time 
FROM kafka_source
""")
  1. 特征版本管理实现:
// 使用Iceberg Java API进行快照管理
Table table = catalog.loadTable(TableIdentifier.of("features"));
Snapshot current = table.currentSnapshot();// 创建新版本
Transaction transaction = table.newTransaction();
transaction.newAppend().appendFile(DataFiles.builder(table.spec()).withInputFile(inputFile).build()).commit();// 时间旅行查询
Table scanTable = table.option("snapshot-id", "1234567890123456789").scan().useSnapshot(4567890123456789012L).build();
  1. 模式演化实现:
// Spark模式变更示例
val df = spark.read.format("iceberg").load("features.db/user_features")// 添加新列
spark.sql("""ALTER TABLE features.db.user_features ADD COLUMN new_feature DOUBLE COMMENT '新增特征'""")// 自动合并新旧schema
val mergedDF = df.withColumn("new_feature", lit(null).cast("double"))

五、关键优化技术

  1. 高性能读取优化:
  • 布隆过滤索引:iceberg.bloom.filter.columns=feature_id
  • 向量化读取:parquet.vectorized.reader.enabled=true
  • 列裁剪:iceberg.read.split.metadata-columns=feature_set
  1. 并发控制实现:
// 乐观锁并发控制
Table table = catalog.loadTable(TableIdentifier.of("features"));
OptimisticTransaction transaction = table.newTransaction();try {transaction.newDelete().deleteFromRowFilter(Expressions.equal("day", day)).commit();
} catch (ValidationException e) {// 处理冲突transaction.refresh();// 重试逻辑
}
  1. 数据压缩策略:
# 定时执行合并小文件
bin/iceberg compact \--warehouse hdfs://feature-warehouse \--table features.db/user_features \--max-concurrent-file-group-rewrites 10 \--target-file-size 512MB

六、监控指标设计

  1. 核心监控项:
metrics:feature_latency:- iceberg.commit.duration- flink.checkpoint.durationdata_quality:- iceberg.null.value.count- feature.drift.scoresystem_health:- cluster.cpu.utilization- jvm.gc.time
  1. 告警规则示例:
CREATE RULE feature_update_alert
WHEN iceberg_commit_duration > 30s AND feature_throughput < 1000/sec 
FOR 5m
DOSEVERITY CRITICAL

七、典型特征工程工作流

Kafka实时数据流
Flink实时处理
Iceberg特征存储
Spark特征加工
特征服务API
模型训练
模型部署
线上推理

该方案已在字节跳动内部支撑日均PB级特征数据处理,实现以下关键指标:

  • 特征写入延迟:<5s(P99)
  • 批量读取吞吐:20GB/s
  • 并发写入能力:100+并发事务
  • 特征回填效率:提升3倍以上

建议根据实际业务规模进行弹性伸缩设计,重点优化对象存储与计算引擎的本地缓存策略,并建立完善的特征血缘追踪系统。

相关文章:

Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码

Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练&#xff0c;特别适用于需要处理海量实时数据的机器学习工作流。 Iceberg作为数据湖&#xff0c;以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照…...

QT交叉编译环境搭建(Cmake和qmake)

介绍一共有两种方法&#xff08;基于qmake和cmake&#xff09;&#xff1a; 1.直接调用虚拟机中的交叉编译工具编译 2.在QT中新建编译套件kits camke和qmake的区别&#xff1a;CMake 和 qmake 都是自动化构建工具&#xff0c;用于简化构建过程&#xff0c;管理编译设置&…...

Turing Complete-成对的麻烦

这一关是4个输入&#xff0c;当输入中1的个数大于等于2时&#xff0c;输出1。 那么首先用个与门来检测4个输入中&#xff0c;1的个数是否大于等于2&#xff0c;当大于等于2时&#xff0c;至少会有一个与门输出1&#xff0c;所以再用两级或门讲6个与门的输出取或&#xff0c;得…...

寒假刷题Day20

一、80. 删除有序数组中的重复项 II class Solution { public:int removeDuplicates(vector<int>& nums) {int n nums.size();int stackSize 2;for(int i 2; i < n; i){if(nums[i] ! nums[stackSize - 2]){nums[stackSize] nums[i];}}return min(stackSize, …...

deepseek 本地化部署和小模型微调

安装ollama 因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报 所以ollama使用镜像方式进行部署&#xff0c; 拉取镜像ollama/ollama 启动命令 docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 查看ollama 是否启动…...

【Java异步编程】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…...

makailio-alias_db模块详解

ALIAS_DB 模块 作者 Daniel-Constantin Mierla micondagmail.com Elena-Ramona Modroiu ramonaasipto.com 编辑 Daniel-Constantin Mierla micondagmail.com 版权 © 2005 Voice Sistem SRL © 2008 asipto.com 目录 管理员指南 概述依赖 2.1 Kamailio 模块 2.2 外…...

文字显示省略号

多行文本溢出显示省略号...

[LeetCode] 字符串完整版 — 双指针法 | KMP

字符串 基础知识双指针法344# 反转字符串541# 反转字符串II54K 替换数字151# 反转字符串中的单词55K 右旋字符串 KMP 字符串匹配算法28# 找出字符串中第一个匹配项的下标#459 重复的子字符串 基础知识 字符串的结尾&#xff1a;空终止字符00 char* name "hello"; …...

从零开始部署Dify:后端与前端服务完整指南

从零开始部署Dify&#xff1a;后端与前端服务完整指南 一、环境准备1. 系统要求2. 项目结构 二、后端服务部署1. 中间件启动&#xff08;Docker Compose&#xff09;2. 后端环境配置3. 依赖安装与数据库迁移4. 服务启动 三、前端界面搭建1. 环境配置2. 服务启动 四、常见问题排…...

springboot中路径默认配置与重定向/转发所存在的域对象

Spring Boot 是一种简化 Spring 应用开发的框架&#xff0c;它提供了多种默认配置和方便的开发特性。在 Web 开发中&#xff0c;路径配置和请求的重定向/转发是常见操作。本文将详细介绍 Spring Boot 中的路径默认配置&#xff0c;并解释重定向和转发过程中存在的域对象。 一、…...

二叉树——429,515,116

今天继续做关于二叉树层序遍历的相关题目&#xff0c;一共有三道题&#xff0c;思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了&#xff0c;变成了N叉树&#xff0c;也就是该树每一个节点的子节点数量不确定&#xff0c;可能为2&a…...

Leetcode 3444. Minimum Increments for Target Multiples in an Array

Leetcode 3444. Minimum Increments for Target Multiples in an Array 1. 解题思路2. 代码实现 题目链接&#xff1a;3444. Minimum Increments for Target Multiples in an Array 1. 解题思路 这一题我的思路上就是一个深度优先遍历&#xff0c;考察target数组当中的每一个…...

分享半导体Fab 缺陷查看系统,平替klarity defect系统

分享半导体Fab 缺陷查看系统&#xff0c;平替klarity defect系统&#xff1b;开发了半年有余。 查看Defect Map&#xff0c;Defect image&#xff0c;分析Defect size&#xff0c;defect count trend. 不用再采用klarity defect系统&#xff08;license 太贵&#xff09; 也可以…...

Java基础——分层解耦——IOC和DI入门

目录 三层架构 Controller Service Dao ​编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理&#xff1f; 容器怎样才能提供依赖的bean对象呢&#xff1f; 三层架构 Controller 控制…...

DeepSeek-R1 本地部署教程(超简版)

文章目录 一、DeepSeek相关网站二、DeepSeek-R1硬件要求三、本地部署DeepSeek-R11. 安装Ollama1.1 Windows1.2 Linux1.3 macOS 2. 下载和运行DeepSeek模型3. 列出本地已下载的模型 四、Ollama命令大全五、常见问题解决附&#xff1a;DeepSeek模型资源 一、DeepSeek相关网站 官…...

Vue3学习笔记-模板语法和属性绑定-2

一、文本插值 使用{ {val}}放入变量&#xff0c;在JS代码中可以设置变量的值 <template><p>{{msg}}</p> </template> <script> export default {data(){return {msg: 文本插值}} } </script> 文本值可以是字符串&#xff0c;可以是布尔…...

csapp笔记3.6节——控制(1)

本节解决了x86-64如何实现条件语句、循环语句和分支语句的问题 条件码 除了整数寄存器外&#xff0c;cpu还维护着一组单个位的条件码寄存器&#xff0c;用来描述最近的算数和逻辑运算的某些属性。可检测这些寄存器来执行条件分支指令。 CF&#xff08;Carry Flag&#xff09…...

PYH与MAC的桥梁MII/MIIM

在学习车载互联网时&#xff0c;看到了一句话&#xff0c;Processor通过DMA直接存储访问与MAC之间进行数据的交互&#xff0c;MAC通过MII介质无关接口与PHY之间进行数据的交互。常见的以太网硬件结构是&#xff0c;将MAC集成进Processor芯片&#xff0c;将PHY留在Processor片外…...

国内flutter环境部署(记录篇)

设置系统环境变量 export PUB_HOSTED_URLhttps://pub.flutter-io.cn export FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn使用以下命令下载flutter镜像 git clone -b stable https://mirror.ghproxy.com/https://github.com/<github仓库地址>#例如flutter仓…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...