GESP2023年12月认证C++六级( 第三部分编程题(1)闯关游戏)










参考程序代码:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <string>
#include <map>
#include <iostream>
#include <cmath>
using namespace std;const int N = 10005; // 最大关卡数
const int M = 105; // 每关最大通道数
const int inf = 0x3f3f3f3f; // 一个很大的数,用于初始化int a[M], b[N], f[N]; // a[i]表示第i个通道的前进关卡数,b[i]表示离开第i关时的得分,f[i]表示到达第i关的最大得分int main() {int n, m;scanf("%d%d", &n, &m); // 读取关卡数和每关通道数for (int i = 1; i <= m; i++)scanf("%d", &a[i]); // 读取每个通道的前进关卡数(注意数组下标从1开始,方便处理)for (int i = 0; i < n; i++)scanf("%d", &b[i]); // 读取每关的得分memset(f, -0x3f, sizeof(f)); // 初始化f数组为一个很小的数,表示当前不可达状态f[0] = 0; // 初始状态,第0关可达,得分为0// 动态规划状态转移for (int i = 1; i < n; i++)for (int j = 1; j <= m; j++)if (i - a[j] >= 0) // 检查是否能从前面的某一关到达当前关f[i] = max(f[i], f[i - a[j]] + b[i - a[j]]); // 更新最大得分int ans = -inf; // 初始化最大得分为一个很小的数// 查找最大得分for (int i = 0; i < n; i++)for (int j = 1; j <= m; j++)if (i + a[j] >= n) { // 检查是否能到达最后一关或之后的关卡ans = max(ans, f[i] + b[i]); // 更新最大得分(注意这里应该加上b[n-1]之后的得分,但为了方便处理,且题目保证通关时不再额外得分,这里简化为b[i])break; // 找到一个可行解后即可跳出内层循环}cout << ans << endl; // 输出最大得分return 0;
}
参考程序2代码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <climits>using namespace std;const int INF = 0x3f3f3f3f;int main() {int n, m;cin >> n >> m;vector<int> a(m); // 每个通道可以前进的关卡数for (int i = 0; i < m; ++i) {cin >> a[i];}vector<int> b(n); // 每关离开时获得的分数for (int i = 0; i < n; ++i) {cin >> b[i];}// f[i] 表示到达第 i 关时的最大分数vector<int> f(n, -INF);f[0] = 0; // 初始状态// 动态规划状态转移for (int i = 1; i < n; ++i) {for (int j = 0; j < m; ++j) {if (i - a[j] >= 0) {f[i] = max(f[i], f[i - a[j]] + b[i - a[j]]);}}}// 计算最终答案int ans = -INF;for (int i = 0; i < n; ++i) {for (int j = 0; j < m; ++j) {if (i + a[j] >= n) {ans = max(ans, f[i] + b[i]);break;}}}cout << ans << endl;return 0;
}
相关文章:
GESP2023年12月认证C++六级( 第三部分编程题(1)闯关游戏)
参考程序代码: #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <string> #include <map> #include <iostream> #include <cmath> using namespace std;const int N 10…...
git 新项目
新项目git 新建的项目如何进行git 配置git git config --global user.name "cc" git config --global user.email ccexample.com配置远程仓库路径 // 添加 git remote add origin http://gogs/cc/mc.git //如果配错了,删除 git remote remove origin初…...
系统URL整合系列视频一(需求方案)
视频 系统URL整合系列视频一(需求方案) 视频介绍 (全国)某大型分布式系统Web资源URL整合需求实现方案讲解。当今社会各行各业对软件系统的web资源访问权限控制越来越严格,控制粒度也越来越细。安全级别提高的同时也增…...
Vue.js 使用组件库构建 UI
Vue.js 使用组件库构建 UI 在 Vue.js 项目中,构建漂亮又高效的用户界面(UI)是很重要的一环。组件库就是你开发 UI 的好帮手,它可以大大提高开发效率,减少重复工作,还能让你的项目更具一致性和专业感。今天…...
计算图 Compute Graph 和自动求导 Autograd | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作5 device 管理,使用 GPU 设备 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started PyTorch 计算图和 Autograd 微积分之于机器学习Computational Graphs 计算图Autograd…...
51单片机入门_05_LED闪烁(常用的延时方法:软件延时、定时器延时;while循环;unsigned char 可以表示的数字是0~255)
本篇介绍编程实现LED灯闪烁,需要学到一些新的C语言知识。由于单片机执行的速度是非常快的,如果不进行延时的话,人眼是无法识别(停留时间要大于20ms)出LED灯是否在闪烁所以需要学习如何实现软件延时。另外IO口与一个字节位的数据对应关系。 文…...
如何获取sql数据中时间的月份、年份(类型为date)
可用自带的函数month来实现 如: 创建表及插入数据: create table test (id int,begindate datetime) insert into test values (1,2015-01-01) insert into test values (2,2015-02-01) 执行sql语句,获取月份: select MONTH(begindate)…...
【单层神经网络】softmax回归的从零开始实现(图像分类)
softmax回归 该回归分析为后续的多层感知机做铺垫 基本概念 softmax回归用于离散模型预测(分类问题,含标签) softmax运算本质上是对网络的多个输出进行了归一化,使结果有一个统一的判断标准,不必纠结为什么要这么算…...
使用开源项目:pdf2docx,让PDF转换为Word
目录 1.安装python 2.安装 pdf2docx 3.使用 pdf2docx 转换 PDF 到 Word pdf2docx:GitCode - 全球开发者的开源社区,开源代码托管平台 环境:windows电脑 1.安装python Download Python | Python.org 最好下载3.8以上的版本 安装时记得选择上&#…...
保姆级教程Docker部署KRaft模式的Kafka官方镜像
目录 一、安装Docker及可视化工具 二、单节点部署 1、创建挂载目录 2、运行Kafka容器 3、Compose运行Kafka容器 4、查看Kafka运行状态 三、集群部署 四、部署可视化工具 1、创建挂载目录 2、运行Kafka-ui容器 3、Compose运行Kafka-ui容器 4、查看Kafka-ui运行状态 …...
ChatGPT提问技巧:行业热门应用提示词案例--咨询法律知识
ChatGPT除了可以协助办公,写作文案和生成短视频脚本外,和还可以做为一个法律工具,当用户面临一些法律知识盲点时,可以向ChatGPT咨询获得解答。赋予ChatGPT专家的身份,用户能够得到较为满意的解答。 1.咨询法律知识 举…...
openRv1126 AI算法部署实战之——Tensorflow模型部署实战
在RV1126开发板上部署Tensorflow算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 从官网下载tensorflow模型和数据集 手动在线下载: https://github.com/tensorflow/models/b…...
STM32 TIM定时器配置
TIM简介 TIM(Timer)定时器 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能ÿ…...
51单片机 05 矩阵键盘
嘻嘻,LCD在RC板子上可以勉强装上,会有一点歪。 一、矩阵键盘 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式;采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态。…...
SSRF 漏洞利用 Redis 实战全解析:原理、攻击与防范
目录 前言 SSRF 漏洞深度剖析 Redis:强大的内存数据库 Redis 产生漏洞的原因 SSRF 漏洞利用 Redis 实战步骤 准备环境 下载安装 Redis 配置漏洞环境 启动 Redis 攻击机远程连接 Redis 利用 Redis 写 Webshell 防范措施 前言 在网络安全领域࿰…...
kubernetes学习-配置管理(九)
一、ConfigMap (1)通过指定目录,创建configmap # 创建一个config目录 [rootk8s-master k8s]# mkdir config[rootk8s-master k8s]# cd config/ [rootk8s-master config]# mkdir test [rootk8s-master config]# cd test [rootk8s-master test…...
python 语音识别
目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…...
一文速览DeepSeek-R1的本地部署——可联网、可实现本地知识库问答:包括671B满血版和各个蒸馏版的部署
前言 自从deepseek R1发布之后「详见《一文速览DeepSeek R1:如何通过纯RL训练大模型的推理能力以比肩甚至超越OpenAI o1(含Kimi K1.5的解读)》」,deepseek便爆火 爆火以后便应了“人红是非多”那句话,不但遭受各种大规模攻击,即便…...
[mmdetection]fast-rcnn模型训练自己的数据集的详细教程
本篇博客是由本人亲自调试成功后的学习笔记。使用了mmdetection项目包进行fast-rcnn模型的训练,数据集是自制图像数据。废话不多说,下面进入训练步骤教程。 注:本人使用linux服务器进行展示,Windows环境大差不差。另外࿰…...
1. Kubernetes组成及常用命令
Pods(k8s最小操作单元)ReplicaSet & Label(k8s副本集和标签)Deployments(声明式配置)Services(服务)k8s常用命令Kubernetes(简称K8s)是一个开源的容器编排系统,用于自动化应用程序的部署、扩展和管理。自2014年发布以来,K8s迅速成为容器编排领域的行业标准,被…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
