微服务实战--高级篇:RabbitMQ高级
服务异步通信-高级篇
消息队列在使用过程中,面临着很多实际问题需要思考:
1.消息可靠性
消息从发送,到消费者接收,会经理多个过程:
其中的每一步都可能导致消息丢失,常见的丢失原因包括:
- 发送时丢失:
- 生产者发送的消息未送达exchange
- 消息到达exchange后未到达queue
- MQ宕机,queue将消息丢失
- consumer接收到消息后未消费就宕机
针对这些问题,RabbitMQ分别给出了解决方案:
- 生产者确认机制
- mq持久化
- 消费者确认机制
- 失败重试机制
下面我们就通过案例来演示每一个步骤。
首先,导入课前资料提供的demo工程:
项目结构如下:
1.1.生产者消息确认
RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。
返回结果有两种方式:
- publisher-confirm,发送者确认
- 消息成功投递到交换机,返回ack
- 消息未投递到交换机,返回nack
- publisher-return,发送者回执
- 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。
注意:
1.1.1.修改配置
首先,修改publisher服务中的application.yml文件,添加下面的内容:
spring:rabbitmq:publisher-confirm-type: correlatedpublisher-returns: truetemplate:mandatory: true
说明:
publish-confirm-type
:开启publisher-confirm,这里支持两种类型:simple
:同步等待confirm结果,直到超时correlated
:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
publish-returns
:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallbacktemplate.mandatory
:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息
1.1.2.定义Return回调
每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:
修改publisher服务,添加一个:
package cn.itcast.mq.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}
1.1.3.定义ConfirmCallback
ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。
在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:
public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);
}
1.2.消息持久化
生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。
要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。
- 交换机持久化
- 队列持久化
- 消息持久化
1.2.1.交换机持久化
RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。
SpringAMQP中可以通过代码指定交换机持久化:
@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}
事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。
可以在RabbitMQ控制台看到持久化的交换机都会带上D
的标示:
1.2.2.队列持久化
RabbitMQ中队列默认是非持久化的,mq重启后就丢失。
SpringAMQP中可以通过代码指定交换机持久化:
@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}
事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。
可以在RabbitMQ控制台看到持久化的队列都会带上D
的标示:
1.2.3.消息持久化
利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:
- 1:非持久化
- 2:持久化
用java代码指定:
默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。
1.3.消费者消息确认
RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。
而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。
设想这样的场景:
- 1)RabbitMQ投递消息给消费者
- 2)消费者获取消息后,返回ACK给RabbitMQ
- 3)RabbitMQ删除消息
- 4)消费者宕机,消息尚未处理
这样,消息就丢失了。因此消费者返回ACK的时机非常重要。
而SpringAMQP则允许配置三种确认模式:
•manual:手动ack,需要在业务代码结束后,调用api发送ack。
•auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack
•none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除
由此可知:
- none模式下,消息投递是不可靠的,可能丢失
- auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
- manual:自己根据业务情况,判断什么时候该ack
一般,我们都是使用默认的auto即可。
1.3.1.演示none模式
修改consumer服务的application.yml文件,添加下面内容:
spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack
修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}
测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。
1.3.2.演示auto模式
再次把确认机制修改为auto:
spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack
在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):
抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:
1.4.消费失败重试机制
当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:
怎么办呢?
1.4.1.本地重试
我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。
修改consumer服务的application.yml文件,添加内容:
spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
重启consumer服务,重复之前的测试。可以发现:
- 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
- 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了
结论:
- 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
- 重试达到最大次数后,Spring会返回ack,消息会被丢弃
1.4.2.失败策略
在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。
在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:
-
RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式
-
ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队
-
RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机
比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。
1)在consumer服务中定义处理失败消息的交换机和队列
@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
2)定义一个RepublishMessageRecoverer,关联队列和交换机
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
完整代码:
package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}
1.5.总结
如何确保RabbitMQ消息的可靠性?
- 开启生产者确认机制,确保生产者的消息能到达队列
- 开启持久化功能,确保消息未消费前在队列中不会丢失
- 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
- 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理
2.死信交换机
2.1.初识死信交换机
2.1.1.什么是死信交换机
什么是死信?
当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):
- 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
- 消息是一个过期消息,超时无人消费
- 要投递的队列消息满了,无法投递
如果这个包含死信的队列配置了dead-letter-exchange
属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。
如图,一个消息被消费者拒绝了,变成了死信:
因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:
如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:
另外,队列将死信投递给死信交换机时,必须知道两个信息:
- 死信交换机名称
- 死信交换机与死信队列绑定的RoutingKey
这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。
2.1.2.利用死信交换机接收死信(拓展)
在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。
我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。
我们在consumer服务中,定义一组死信交换机、死信队列:
// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}
2.1.3.总结
什么样的消息会成为死信?
- 消息被消费者reject或者返回nack
- 消息超时未消费
- 队列满了
死信交换机的使用场景是什么?
- 如果队列绑定了死信交换机,死信会投递到死信交换机;
- 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。
2.2.TTL
一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:
- 消息所在的队列设置了超时时间
- 消息本身设置了超时时间
2.2.1.接收超时死信的死信交换机
在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:
@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "dl.ttl.queue", durable = "true"),exchange = @Exchange(name = "dl.ttl.direct"),key = "ttl"
))
public void listenDlQueue(String msg){log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}
2.2.2.声明一个队列,并且指定TTL
要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:
@Bean
public Queue ttlQueue(){return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化.ttl(10000) // 设置队列的超时时间,10秒.deadLetterExchange("dl.ttl.direct") // 指定死信交换机.build();
}
注意,这个队列设定了死信交换机为dl.ttl.direct
声明交换机,将ttl与交换机绑定:
@Bean
public DirectExchange ttlExchange(){return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}
发送消息,但是不要指定TTL:
@Test
public void testTTLQueue() {// 创建消息String message = "hello, ttl queue";// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);// 记录日志log.debug("发送消息成功");
}
发送消息的日志:
查看下接收消息的日志:
因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。
2.2.3.发送消息时,设定TTL
在发送消息时,也可以指定TTL:
@Test
public void testTTLMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);log.debug("发送消息成功");
}
查看发送消息日志:
接收消息日志:
这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。
2.2.4.总结
消息超时的两种方式是?
- 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
- 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信
如何实现发送一个消息20秒后消费者才收到消息?
- 给消息的目标队列指定死信交换机
- 将消费者监听的队列绑定到死信交换机
- 发送消息时给消息设置超时时间为20秒
2.3.延迟队列
利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。
延迟队列的使用场景包括:
- 延迟发送短信
- 用户下单,如果用户在15 分钟内未支付,则自动取消
- 预约工作会议,20分钟后自动通知所有参会人员
因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。
这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html
使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq
2.3.1.安装DelayExchange插件
参考课前资料:
2.3.2.DelayExchange原理
DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:
- 接收消息
- 判断消息是否具备x-delay属性
- 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
- 返回routing not found结果给消息发送者
- x-delay时间到期后,重新投递消息到指定队列
2.3.3.使用DelayExchange
插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。
1)声明DelayExchange交换机
基于注解方式(推荐):
也可以基于@Bean的方式:
2)发送消息
发送消息时,一定要携带x-delay属性,指定延迟的时间:
2.3.4.总结
延迟队列插件的使用步骤包括哪些?
•声明一个交换机,添加delayed属性为true
•发送消息时,添加x-delay头,值为超时时间
3.惰性队列
3.1.消息堆积问题
当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。
解决消息堆积有两种思路:
- 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
- 扩大队列容积,提高堆积上限
要提升队列容积,把消息保存在内存中显然是不行的。
3.2.惰性队列
从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:
- 接收到消息后直接存入磁盘而非内存
- 消费者要消费消息时才会从磁盘中读取并加载到内存
- 支持数百万条的消息存储
3.2.1.基于命令行设置lazy-queue
而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:
rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues
命令解读:
rabbitmqctl
:RabbitMQ的命令行工具set_policy
:添加一个策略Lazy
:策略名称,可以自定义"^lazy-queue$"
:用正则表达式匹配队列的名字'{"queue-mode":"lazy"}'
:设置队列模式为lazy模式--apply-to queues
:策略的作用对象,是所有的队列
3.2.2.基于@Bean声明lazy-queue
3.2.3.基于@RabbitListener声明LazyQueue
3.3.总结
消息堆积问题的解决方案?
- 队列上绑定多个消费者,提高消费速度
- 使用惰性队列,可以再mq中保存更多消息
惰性队列的优点有哪些?
- 基于磁盘存储,消息上限高
- 没有间歇性的page-out,性能比较稳定
惰性队列的缺点有哪些?
- 基于磁盘存储,消息时效性会降低
- 性能受限于磁盘的IO
4.MQ集群
4.1.集群分类
RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:
•普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。
•镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。
镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。
4.2.普通集群
4.2.1.集群结构和特征
普通集群,或者叫标准集群(classic cluster),具备下列特征:
- 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
- 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
- 队列所在节点宕机,队列中的消息就会丢失
结构如图:
4.2.2.部署
参考课前资料:《RabbitMQ部署指南.md》
4.3.镜像集群
4.3.1.集群结构和特征
镜像集群:本质是主从模式,具备下面的特征:
- 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
- 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
- 一个队列的主节点可能是另一个队列的镜像节点
- 所有操作都是主节点完成,然后同步给镜像节点
- 主宕机后,镜像节点会替代成新的主
结构如图:
4.3.2.部署
参考课前资料:《RabbitMQ部署指南.md》
4.4.仲裁队列
4.4.1.集群特征
仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:
- 与镜像队列一样,都是主从模式,支持主从数据同步
- 使用非常简单,没有复杂的配置
- 主从同步基于Raft协议,强一致
4.4.2.部署
参考课前资料:《RabbitMQ部署指南.md》
4.4.3.Java代码创建仲裁队列
@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}
4.4.4.SpringAMQP连接MQ集群
注意,这里用address来代替host、port方式
spring:rabbitmq:addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073username: itcastpassword: 123321virtual-host: /
相关文章:
微服务实战--高级篇:RabbitMQ高级
服务异步通信-高级篇 消息队列在使用过程中,面临着很多实际问题需要思考: 1.消息可靠性 消息从发送,到消费者接收,会经理多个过程: 其中的每一步都可能导致消息丢失,常见的丢失原因包括: 发送…...
autoCAD2022 - 设置新的原点
文章目录autoCAD2022 - 设置新的原点概述笔记UCS原点设置功能的菜单位置ENDautoCAD2022 - 设置新的原点 概述 上次整板子的dxf时, 原来的原点不合适, 想调整一下. 当时整完了, 没记录. 这次用的时候, 又找半天… 设置新原点的功能, 不在顶部菜单中, 而是在视图右上角的UCS图标…...
spring boot 配置 mybatis-plus多数据源
简介Mybatis-puls 多数据源的使用,采用的是官方提供的dynamic-datasource-spring-boot-starter包的 DS 注解,具体可以参考官网:https://gitee.com/baomidou/dynamic-datasource-spring-boot-starterpom.xml文件引入如下依赖主要引入dynamic-d…...
独立产品灵感周刊 DecoHack #047 - 安卓手机上最有用的APP
本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。💻 产品推荐 1. Bouncer Tempor…...
【面试题】JavaScript中递归的理解
大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库递归 RecursionTo iterate is human, to recurse, divine. 理解迭代,神理解递归。本文会以 JavaScript为主、有部分 Rust 举例说明。…...
PyTorch学习笔记
PyTorch学习笔记(一):PyTorch环境安装 往期学习资料推荐: 1.Pytorch实战笔记_GoAI的博客-CSDN博客 2.Pytorch入门教程_GoAI的博客-CSDN博客 安装参考: 1.视频教程:3分钟深度学习【环境搭建】CUDA Anacon…...
SpringBoot2知识点记录
SpringBoot2知识点记录1.SpringBoot2基础入门1.1 环境要求1.1.1 maven设置1.2 第一个程序 HelloWorld1.2.1 创建maven工程1.2.2 引入依赖1.2.3 创建主程序1.2.4 编写业务1.2.5 测试1.2.6 简化配置1.2.7 简化部署1.3 自动装配1.3.1 SpringBoot特点1.3.1.1 依赖管理1.3.1.2 自动装…...
Mysql
1 Sql编写 count(*) //是对行数目进行计数 count(column_name) //是对列中不为空的行进行计数 SELECT COUNT( DISTINCT id ) FROM tablename; //计算表中id不同的记录有多少条 SELECT DISTINCT id, type FROM tablename; //返回表中id与type同时不同的结果 X.1 连表子查询 sel…...
Q4营收利润增长背后估值持续偏低,全球支付巨头PayPal前景如何?
作为国际版的“支付宝”,全球第三方支付巨头PayPal的业务横跨欧美市场,覆盖了全球200多个国家和地区。同时,PayPal也是首家进军中国支付市场的外资机构,实力强劲。然而,近两年,PayPal的市值一路从3000亿跌至…...
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
BLOOM:一个176B参数且可开放获取的多语言模型《BLOOM: A 176B-Parameter Open-Access Multilingual Language Model》论文地址:https://arxiv.org/pdf/2211.05100.pdf 相关博客 【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍 【自然…...
小红书穿搭博主推广费用是多少?
小红书作为一个种草属性非常强的平台,商业价值是有目共睹的。很多爱美的女性都会在小红书上被种草某个商品,所以很多服装品牌都会在小红书上布局推广。 穿搭作为小红书的顶梁柱类目,刷小红书就能总是看到好看的穿搭博主分享美美的衣服&#…...
网络安全-PHPstudy环境搭建
网络安全-PHPstudy环境搭建 网络搭建我是专家,安全我懂的不多,所以可能很基础。。因为我自己都不懂,都是跟着课程学的 PHPstudy 这个东东是一个在windwos下可以快速部署的web开发环境,安装了就能用,也支持iis和ngin…...
operator的两种用法(重载和隐式类型转换)
文章目录重载隐式类型转换构造函数的隐式类型转换补充operator算子的隐式类型转换重载 略 隐式类型转换 构造函数的隐式类型转换 利用operator进行的隐式类型转换成为operator算子的隐式类型转换,讲这个之前先了解构造函数的隐式类型转换,请看以下代…...
vue常用指令
介绍 vue是以数据驱动和组件化开发为核心的前端框架,可以快速搭建前端应用 常用指令 指令:页面数据的操作(以数据去驱动DOM) <div v-xxx""></div>v-if:做元素的插入(append&…...
MATLAB | 有关数值矩阵、颜色图及颜色列表的技巧整理
这是一篇有关数值矩阵、颜色矩阵、颜色列表的技巧整合,会以随笔的形式想到哪写到哪,可能思绪会比较飘逸请大家见谅,本文大体分为以下几个部分: 数值矩阵用颜色显示从颜色矩阵提取颜色从颜色矩阵中提取数据颜色列表相关函数颜色测…...
C++模板元编程详细教程(之九)
前序文章请看: C模板元编程详细教程(之一) C模板元编程详细教程(之二) C模板元编程详细教程(之三) C模板元编程详细教程(之四) C模板元编程详细教程(之五&…...
PhysioNet2017分类的代码实现
PhysioNet2017数据集介绍可参考文章:https://wendy.blog.csdn.net/article/details/128686196。本文主要介绍利用PhysioNet2017数据集对其进行分类的代码实现。 目录一、数据集预处理二、训练2.1 导入数据集并进行数据裁剪2.2 划分训练集、验证集和测试集2.3 设置训…...
正大期货本周财经大事抢先看
美国1月CPI、Fed 等央行官员谈话 美国1月超强劲的非农就业人口,让投资人开始上修对这波升息循环利率顶点的预测,也使本周二 (14 日) 的美国 1月 CPI 格外受关注。 介绍正大国际期货主账户对比国内期货的优势 第一点:权限都在主账户 例如…...
html+css综合练习一
文章目录一、小米注册页面1、要求2、案例图3、实现效果3.1、index.html3.2、style.css二、下午茶页面1、要求2、案例图3、index.html4、style.css三、法国巴黎页面1、要求2、案例图3、index.html4、style.css一、小米注册页面 1、要求 阅读下列说明、效果图,进行静…...
安装jdk8
目录标题一、下载地址(一)Linux下载(二)Win下载二、安装(一)Linux(二)Win三、卸载(一)Linux(二)Win一、下载地址 jdk8最新版 jdk8其他…...
二分法心得
原教程见labuladong 首先,我们建议左右区间全部用闭区间。那么第一个搜索区间:left0; rightlen-1; 进入while循环,结束条件是right<left。 然后求mid,如果nums[mid]的值比target大,说明target在左边,…...
Linux安装Docker完整教程
背景最近接手了几个项目,发现项目的部署基本上都是基于Docker的,幸亏在几年前已经熟悉的Docker的基本使用,没有抓瞎。这两年随着云原生的发展,Docker在云原生中的作用使得它也蓬勃发展起来。今天这篇文章就带大家一起实现一下在Li…...
备份基础知识
备份策略可包括:– 整个数据库(整个)– 部分数据库(部分)• 备份类型可指示包含以下项:– 所选文件中的所有数据块(完全备份)– 只限自以前某次备份以来更改过的信息(增量…...
C++学习记录——팔 内存管理
文章目录1、动态内存管理2、内存管理方式operator new operator delete3、new和delete的实现原理1、动态内存管理 C兼容C语言关于内存分配的语法,而添加了C独有的东西。 //int* p1 (int*)malloc(sizeof(int));int* p1 new int;new是一个操作符,C不再需…...
Spring事务失效原因分析解决
文章目录1、方法内部调用2、修饰符3、非运行时异常4、try…catch捕获异常5、多线程调用6、同时使用Transactional和Async7、错误使用事务传播行为8、使用的数据库不支持事务9、是否开启事务支持在工作中,经常会碰到一些事务失效的坑,基于遇到的情况&…...
4个月的测试经验,来面试就开口要17K,面试完,我连5K都不想给他.....
2021年8月份我入职了深圳某家创业公司,刚入职还是很兴奋的,到公司一看我傻了,公司除了我一个测试,公司的开发人员就只有3个前端2个后端还有2个UI,在粗略了解公司的业务后才发现是一个从零开始的项目,目前啥…...
python学习之pyecharts库的使用总结
pyecharts官方文档:https://pyecharts.org//#/zh-cn/ 【1】Timeline 其是一个时间轴组件,如下图红框所示,当点击红色箭头指向的“播放”按钮时,会呈现动画形式展示每一年的数据变化。 data格式为DataFrame,数据如下图…...
【taichi】利用 taichi 编写深度学习算子 —— 以提取右上三角阵为例
本文以取 (bs, n, n) 张量的右上三角阵并展平为向量 (bs, n*(n1)//2)) 为例,展示如何用 taichi 编写深度学习算子。 如图,要把形状为 (bs,n,n)(bs,n,n)(bs,n,n) 的张量,转化为 (bs,n(n1)2)(bs,\frac{n(n1)}{2})(bs,2n(n1)) 的向量。我们先写…...
二进制 k8s 集群下线 worker 组件流程分析和实践
文章目录[toc]事出因果个人思路准备实践当前 worker 节点信息将节点标记为不可调度驱逐节点 pod将 worker 节点从 k8s 集群踢出下线 worker 节点相关组件事出因果 因为之前写了一篇 二进制 k8s 集群下线 master 组件流程分析和实践,所以索性再写一个 worker 节点的缩…...
Bean的六种作用域
限定程序中变量的可用范围叫做作用域,Bean对象的作用域是指Bean对象在Spring整个框架中的某种行为模式~~ Bean对象的六种作用域: singleton:单例作用域(默认) prototype:原型作用域(多例作用域…...
wordpress 标题空格/学生个人网页设计模板
当多线程并发访问一个方法(函数)时的线程安全问题 首先, 所有线程访问的是同一个方法吗? NO, 方法之于线程 就好像 程序之于进程一样,每一次执行都是独立的, 是在某一个数据集上的一次执行.这样来看: 方法是一段程序代码,在内存某个空间,假设是0000H到0100H,线程a执行到…...
wordpress开发视频教程/网页搜索引擎大全
一、痔疮用药市场规模 痔疮,是人类特有的常见病、多发病。据有关普查资料表明,痔疮等肛门直肠疾病的发病率为59.1%,痔疮占所有肛肠疾病中的87.25%,而其中又以内痔最为常见,占所有肛肠疾病的52.19%。男女均可得病&#…...
从零开始建设企业网站/简阳seo排名优化课程
成交量(VOL)作为市场较为重要的指标之一,其量增量缩影响着价格的变动,亦看做是多空双方博弈的结果。那么如何洞察成交量(VOL)以进行交易呢? 首先我们先了解成交量(VOL)&…...
怎么注册网站个人/百度推广运营这个工作好做吗
市调机构TrendForce指出三季度全球电视面板价格已上涨三成,预期四季度供给紧张的局面不会缓解,液晶面板价格将会进一步上涨,这意味着已执液晶面板牛耳的中国面板企业可望取得业绩的大幅增长。TrendForce认为由于韩国两大液晶面板企业三星已放…...
wordpress adams主题/色盲测试图第六版
iPhone应用程序是由主函数main启动,它负责调用UIApplicationMain函数,该函数的形式如下所示: int UIApplicationMain ( int argc, char *argv[], NSString *principalClassName, NSString *delegateClassName ); 那么UIApplicationMain函数到…...
国外免费可以做网站的服务器/百度搜索网
旧制(中四、中五)实施九年免费教育之后,学生需要以校内考试成绩作评级,决定能否升读高中(中四、中五)。香港的中四及中五课程,大致上会文理分科,分开文、理、商科3个主流。教授科目均以香港考试及评核局举行的香港中学…...