模型解释性:SHAP包的使用
本篇博客介绍另一种事后可解释性方法:SHAP(SHapley Additive exPlanation)方法。
1. Shapley值理论
Shapley值是博弈论中的一个概念,通过衡量联盟中各成员对联盟总目标的贡献程度,从而根据贡献程度来进行联盟成员的利益分配,避免了分配的平均主义。
当Shapley理论用于解释机器学习模型的时候,将输入特征xxx视为参与成员,模型输出的概率分布f(x)f(x)f(x)视为联盟总目标,通过衡量各特征的贡献度来挖掘重要特征,从而提供可解释性判断依据。其数学模型如下:g(Z′)=φ0+∑j=1MφjZj′≈f(x)(1)g(Z^{'})=\varphi_{0}+\sum_{j=1}^{M}\varphi_{j}Z^{'}_{j}\approx f(x) \tag{1}g(Z′)=φ0+j=1∑MφjZj′≈f(x)(1)其中,ggg是解释模型,f(x)f(x)f(x)是原机器学习模型,Zj′={0,1}MZ^{'}_{j}=\{0,1\}^{M}Zj′={0,1}M表示相应特征是否被观察到,MMM是输入特征的数目,φi\varphi_{i}φi是每个特征的归因值,φ0\varphi_{0}φ0是解释模型的常数。
对于一个特定的输入数据x0x_{0}x0,其Shapley值的计算公式如下:φi(f,x0)=∑S⊆NS/{i}∣S∣!(M−∣S∣−1)!∣NS∣![f(S∪{i})−f(S)](2)\varphi_{i}(f,x_{0})=\sum_{S\subseteq N_{S}/ \{i\}}\frac{|S|!(M-|S|-1)!}{|N_{S}|!}[f(S\cup\{i\})-f(S)]\tag{2}φi(f,x0)=S⊆NS/{i}∑∣NS∣!∣S∣!(M−∣S∣−1)![f(S∪{i})−f(S)](2)其中,φi(f)\varphi_{i}(f)φi(f)代表函数fff中特征iii的贡献度,NSN_{S}NS是所有特征组成的集合,SSS代表特征子集,NS/{i}N_{S}/\{i\}NS/{i}代表在集合NSN_{S}NS中去除特征iii,S∪{i}S\cup \{i\}S∪{i}表示子集SSS中增加特征iii,∣S∣|S|∣S∣表示集合SSS中元素的个数。
为了方面公式(2)的计算,通常将公式(2)转化为如下公式计算:φi(f,x0)=∑z′∈{0,1}M∣z′∣!(M−∣z′∣−1)!M![fS(z′)−fS(z′∣i)](3)\varphi_{i}(f,x_{0})=\sum_{z^{'}\in\{0,1\}^{M}}\frac{|z^{'}|!(M-|z^{'}|-1)!}{M!}[f_{S}(z^{'})-f_{S}(z^{'}|i)]\tag{3}φi(f,x0)=z′∈{0,1}M∑M!∣z′∣!(M−∣z′∣−1)![fS(z′)−fS(z′∣i)](3)其中,fS=E[f(x)∣zS′]=1N∑j=1Nf(xj′)f_{S}=E[f(x)|z_{S}^{'}]=\frac{1}{N}\sum_{j=1}^{N}f(x_{j}^{'})fS=E[f(x)∣zS′]=N1j=1∑Nf(xj′)其中,zS′z_{S}^{'}zS′为集合SSS中特征的取值所组成的集合,NNN为原函数fff训练数据的个数,xj′x_{j}^{'}xj′的取值如下:xj′={x0i,Fi∈zS′xji,Fi∉zS′x_{j}^{'}=\left\{\begin{aligned} x_{0i},& F_{i}\in z_{S}^{'} \\ x_{ji},&F_{i}\notin z_{S}^{'} \end{aligned}\right. xj′={x0i,xji,Fi∈zS′Fi∈/zS′其中,x0ix_{0i}x0i为待解释数据x0x_{0}x0的第iii个特征值,xjix_{ji}xji表示第jjj个训练数据中第iii个特征的取值,FiF_{i}Fi表示第iii个特征值。
SHAP值具备扎实的理论基础,但φi\varphi_{i}φi的计算复杂度和E[f(x)∣zS′]E[f(x)|z_{S}^{'}]E[f(x)∣zS′]的有效估计是其在实际应用中的最大阻碍,为了解决这个问题,Lundberg等人提出了Tree SHAP方法。
Tree SHAP是用于树模型的快速SHAP值估计方法,大大增加了SHAP值的实际应用能力。
2 SHAP包用法
这里仍然以Boston房价为例,使用XGBoost方法训练模型。其用法举例如下:
模型训练
import pandas as pd
import numpy as np
from sklearn.datasets import load_boston
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split
import shap
shap.initjs()
#分类
boston=load_boston()
X=boston.data
y=boston.target
features=boston.feature_names
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)xgbr=XGBRegressor(n_estimators=200,max_depth=4)
xgbr.fit(X_train,y_train)
对单个样本进行解释
explainer=shap.TreeExplainer(xgbr)
shap_values=explainer.shap_values(X_test[1].reshape(1,-1))
shap.force_plot(explainer.expected_value,shap_values,X_test[1].reshape(1,-1),feature_names=features)
其结果如下:
关于上图,有以下几个方面需要说明:
- base_value:全体样本Shape平均值,这里的全体样本指的是模型的训练样本;
- output_value: 当前样本的Shap输出值,即为模型的预测值;
- 正向作用特征:红色特征即为正向作用的特征;
- 反向作用特征:蓝色特征即为反向作用的特征;
整个测试集的Shap分布
explainer=shap.TreeExplainer(xgbr)
shap_values=explainer.shap_values(X_test)
shap.force_plot(explainer.expected_value,shap_values,X_test,feature_names=features)
其结果如下(可以通过调节横纵坐标观察当个特征的效果):
从特征角度观察样本Shap值
shap.summary_plot(shap_values,X_test,feature_names=features)
其结果如下:
参考文献
- 《基于图模型机器学习算法的可解释性技术研究与实现》
- 《稳定评估机器学习模型可解释性研究》
- https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/106131890
相关文章:
模型解释性:SHAP包的使用
本篇博客介绍另一种事后可解释性方法:SHAP(SHapley Additive exPlanation)方法。 1. Shapley值理论 Shapley值是博弈论中的一个概念,通过衡量联盟中各成员对联盟总目标的贡献程度,从而根据贡献程度来进行联盟成员的利益分配,避免…...
算法训练营 day45 动态规划 0-1背包理论 分割等和子集
算法训练营 day45 动态规划 0-1背包理论 分割等和子集 0-1背包理论 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 在下面的讲解中&…...
SSM框架
1.mybatis的底层原理 本质上就是使用反射和动态代理来实现对应的映射关系 2.日志级别 3.传递参数 单个参数的传递和多个参数的传递 Emp selectOne(Param(“xingming”) String name); List selectByCondition(Param(“name”) String name,Param(“sal”) double sal); 4.#和…...
教育行业需要什么样的客服系统?
某教育公司拥有素质教育、成人教育、智慧教育等多个业务板块,日常通过电商、线上媒体、线上线下授课等方式进行业务开展和品牌宣传,取得了非常不错的成绩,受到了很多人的好评反馈。 对于这样一个教育公司,客户来源广泛࿰…...
花房集团任命新首席财务官:已跌破IPO发行价,活跃用户下滑
上市刚满2个月,花椒母公司花房集团(HK:03611)的高管就发生了变更。2023年2月12日,花房集团披露的公告显示,董事会宣布赵磊为该公司首席财务官(CFO),自2023年2月10日起生效。 据贝多…...
儿童绘本馆图书借阅租赁知识付费小程序源码交流
1.分类图书 2.书单推荐 4.会员卡次、期限购买 5.借阅时间选择 6.积分签到 7.优惠Q领取 前端uniapp开发 后端thinkphp开发 完全开源 <template> <view class"sp-section sp-index"> <!-- search --> <view class&qu…...
Vue3 中 axios 的安装及使用
目录前言:一、什么是 axios ?二、Axios 的配置项三、Axios 的请求方式四、自定义创建实例五、Axios 请求错误处理六、Axios 解决跨域问题七、Axios 请求案例随机笑话大全总结:前言: 在编写vue里的项目时,必须要用和后台…...
Django设计模式以及模板层介绍
MVC和MTV 传统的MVC作用:降低模块间的耦合度(解耦)Django的MTV模式 作用:降低模块间的耦合度(解耦)什么是模板 1、模板是可以根据字典数据动态变化的html网页2、模板可以根据视图中传递的字典数据动态生成相…...
Linux信号一门搞定
1.信号是什么? 信号其实就是一个软件中断。 例: 输入命令,在Shell下启动一个前台进程。用户按下Ctrl-C,键盘输入产生一个硬件中断。如果CPU当前正在执行这个进程的代码,则该进程的用户空间代码暂停执行,…...
手撸一个动态Feign,实现一个“万能”接口调用
Feign,在微服务框架中,是的服务直接的调用变得很简洁、简单,而不需要再编写Java Http调用其他微服务的接口。 动态feign 对于fegin调用,我们一般的用法:为每个微服务都创建对应的feignclient接口,然后为每…...
Linux Capabilities 入门
目录 Linux capabilities 是什么? capabilities 的赋予和继承 线程的 capabilities Permitted Effective Inheritable Bounding Ambient 文件的 capabilities Permitted Inheritable Effective 运行 execve() 后 capabilities 的变化 案例 Linux capab…...
驱动 day6
关于设备树的理解: 设备树(Device Tree)是一种用于特定硬件设备的解释语法树。它用来表示存储有关主板硬件和CPU架构信息的数据在内核中的传递格式,使内核可以更好地了解硬件并支持它们,而不必编写固定的代码。设备节点…...
附录2-tensorflow目标检测
源码来自作者Bubbliiiing,我对参考链接的代码略有修改,网盘地址 链接:百度网盘 请输入提取码 提取码:dvb1 目录 1 参考链接 2 环境 3 数据集准备 3.1 VOCdevkit/VOC2007 3.2 model_data/voc_classes.txt 3.3 voc_an…...
常见的EMC问题
电磁兼容设计的目的就在于满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,并且使产品不会对系统中的其它设备产生电磁干扰。 电磁兼容设计中常见的问题有哪些? 1、电磁兼容设计可以从电路设计(包括器件选择&…...
Redis内存存储效率问题
目录 内存碎片是如何形成的? 如何判断是否有内存碎片? 如何清理内存碎片? INFO命令 面向 Prometheus 的 Redis-exporter 监控 实习期间,了解到,企业级开发中多个项目使用Redis,运行Redis实例的有可能是…...
3.28 haas506 2.0开发教程-example-蓝牙多设备扫描(仅支持M320,HD1)
haas506 2.0开发教程-example-蓝牙多设备扫描案例说明蓝牙信息克隆1.手机蓝牙改名信息克隆代码测试案例说明 开发板扫描蓝牙设备,获取并打印蓝牙设备mac地址。mac地址每个设备不同,且不能更改。本案例仅适用于M320开发板和HD1-RTU。案例使用手机与iBeac…...
C语言经典编程题100例(41~60)
目录41、习题4-4 特殊a串数列求和42、习题4-6 水仙花数43、习题4-7 最大公约数和最小公倍数44、习题7-5 找鞍点45、练习5-1 求m到n之和46、练习5-2 找两个数中最大者47、练习5-3 数字金字塔48、习题5-1 符号函数49、习题5-2 使用函数求奇数和50、习题5-3 使用函数计算两点间的距…...
git日常使用命令
实习这段时间使用了很多git指令来提交代码,简单记录一下日常使用的指令: 提交代码通常顺序: 1.git status 查看本地修改项 2.git add . 提交全部文件 (这个 .是全部文件)到暂存区 3.git commit -m ‘本次提交的说明’…...
ES6对象展开运算符浅拷贝or深拷贝
ES6中提出的对象展开运算符“…”就是用来展开元素的。有了它就不用代码循环遍历了,偷懒专用。 1. 合并数组 展开原有数组中的所有元素,可以合并成一个新的数组。 var a[1,2,3]; var b[4,5,6]; var c[...a,...b]; console.log(c) // 输出:…...
leaflet 上传包含shp的zip文件,在map上解析显示图形(059)
第059个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中本地上传包含shp的zip文件,利用shapefile读取shp数据,并在地图上显示图形。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果加载shapefile.js方式安装引用jszip(…...
CAN总线详细介绍
1.1 CAN是什么? CAN 最终成为国际标准 ( ISO11898(高速应用)和 ISO11519(低速应用)),是国际上应用最广泛的现场总线之一。 1.2 CAN总线特点 多主方式: 可以多主方式工作,网络上任意一个节点…...
python如何完成对 Excel文件的解密后读取?
通常为了防止重要的Excel文件数据内容的泄露,需要对文件整体进行加密与解密的操作。 对于文件的加解密过程,python也有很多非标准库来帮助我们完成操作,这里主要说明如何完成对Excel文件的解密与读取操作。 这里我们使用到的是msoffcrypto-…...
微服务实战--高级篇:RabbitMQ高级
服务异步通信-高级篇 消息队列在使用过程中,面临着很多实际问题需要思考: 1.消息可靠性 消息从发送,到消费者接收,会经理多个过程: 其中的每一步都可能导致消息丢失,常见的丢失原因包括: 发送…...
autoCAD2022 - 设置新的原点
文章目录autoCAD2022 - 设置新的原点概述笔记UCS原点设置功能的菜单位置ENDautoCAD2022 - 设置新的原点 概述 上次整板子的dxf时, 原来的原点不合适, 想调整一下. 当时整完了, 没记录. 这次用的时候, 又找半天… 设置新原点的功能, 不在顶部菜单中, 而是在视图右上角的UCS图标…...
spring boot 配置 mybatis-plus多数据源
简介Mybatis-puls 多数据源的使用,采用的是官方提供的dynamic-datasource-spring-boot-starter包的 DS 注解,具体可以参考官网:https://gitee.com/baomidou/dynamic-datasource-spring-boot-starterpom.xml文件引入如下依赖主要引入dynamic-d…...
独立产品灵感周刊 DecoHack #047 - 安卓手机上最有用的APP
本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。💻 产品推荐 1. Bouncer Tempor…...
【面试题】JavaScript中递归的理解
大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库递归 RecursionTo iterate is human, to recurse, divine. 理解迭代,神理解递归。本文会以 JavaScript为主、有部分 Rust 举例说明。…...
PyTorch学习笔记
PyTorch学习笔记(一):PyTorch环境安装 往期学习资料推荐: 1.Pytorch实战笔记_GoAI的博客-CSDN博客 2.Pytorch入门教程_GoAI的博客-CSDN博客 安装参考: 1.视频教程:3分钟深度学习【环境搭建】CUDA Anacon…...
SpringBoot2知识点记录
SpringBoot2知识点记录1.SpringBoot2基础入门1.1 环境要求1.1.1 maven设置1.2 第一个程序 HelloWorld1.2.1 创建maven工程1.2.2 引入依赖1.2.3 创建主程序1.2.4 编写业务1.2.5 测试1.2.6 简化配置1.2.7 简化部署1.3 自动装配1.3.1 SpringBoot特点1.3.1.1 依赖管理1.3.1.2 自动装…...
Mysql
1 Sql编写 count(*) //是对行数目进行计数 count(column_name) //是对列中不为空的行进行计数 SELECT COUNT( DISTINCT id ) FROM tablename; //计算表中id不同的记录有多少条 SELECT DISTINCT id, type FROM tablename; //返回表中id与type同时不同的结果 X.1 连表子查询 sel…...
南京专业做网站的公司/百度提交工具
原文地址为: IE6和IE7共存方法(别人是别人的,我是我的)2009年9月3日更新 本文是较老的文章,最新的共存方法,建议使用IETester最新版。最近版IETester的下载和介绍,请阅读文章《IETester更新至v0…...
网站建设费用估计/佛山seo外包平台
本季第一至四季 The IT Crowd (2006)看点:《IT狂人》史上最囧,最雷,最脑残,最出乎意料,最不按常理出牌的IT “精英们”登上银屏了。让超擅长收发邮件、单击和双击鼠标的IT女皇Jen,智商超高最爱搞发明创造的…...
网站404页面编写/seo关键词有话要多少钱
姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名姓名烦烦烦烦烦烦烦烦烦烦烦烦烦123456456健康健康就好看…...
少儿美术专业网站做课件/重庆网站seo服务
2019独角兽企业重金招聘Python工程师标准>>> 1. Cassandra架构 从安装过程和机器拓展部署可以看出,Cassandra的规模化管理非常赢得人心。 1.1 概述 Cassandra的系统架构与Dynamo类似,是基于一致性哈希的完全P2P架构,每行数…...
免费个人logo设计/佛山快速排名seo
介绍 本文介绍由Eclipse推出的名为Che的WebIDE ,只是一种“云”上的开放工具。Che目前是在Docker中运行的,命令如下: docker run -i -t -v /var/run/docker.sock:/var/run/docker.sock eclipse/che start 如果您的机器上还没有Docker的话…...
零食天堂专做零食推荐的网站/千万别在百度上搜别人的名字
第一次记录开发,话不多的说! 1.引微信js-sdk npm install wx-module --save 备注:npm安装自行百度 2.在需要调用的页面中引入 import wx from jweixin-module 3.获取wx.config注册信息。注册成功提示config:ok ,上线需修改…...