算法训练营 day45 动态规划 0-1背包理论 分割等和子集
算法训练营 day45 动态规划 0-1背包理论 分割等和子集
0-1背包理论
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
在下面的讲解中,我举一个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
二维dp数组
- 确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
看下面这个图:
- 确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
那么可以有两个方向推出来dp[i][j],
- 不放物品i:由
dp[i - 1][j]
推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]
就是dp[i - 1][j]
。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。) - 放物品i:由
dp[i - 1][j - weight[i]]
推出,dp[i - 1][j - weight[i]]
为背包容量为j - weight[i]
的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i]
(物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
;
- dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0;
在看其他情况。
状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
; 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j]
,即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j]
应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j]
应该是value[0],因为背包容量放足够放编号0物品。
此时dp数组初始化情况如图所示:
- 确定遍历顺序
在如下图中,可以看出,有两个遍历的维度
那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。
要理解递归的本质和递推的方向。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
; 递归公式中可以看出dp[i][j]
是靠dp[i-1][j]
和dp[i - 1][j - weight[i]]
推导出来的。
dp[i-1][j]
和dp[i - 1][j - weight[i]]
都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:
再来看看先遍历背包,再遍历物品呢,如图:
大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!
- 举例推导dp数组
来看一下对应的dp数组的数值,如图:
class Main {public static void main(String[] args) {int[] weight = {1,3,4};int[] value = {15,20,30};int bagSize = 4;testWeightBagProblem(weight,value,bagSize);}/*** 动态规划获得结果* @param weight 物品的重量* @param value 物品的价值* @param bagSize 背包的容量*/public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){// 创建dp数组int goods = weight.length; // 获取物品的数量int[][] dp = new int[goods][bagSize + 1];// 初始化dp数组// 创建数组后,其中默认的值就是0for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}// 填充dp数组for (int i = 1; i < weight.length; i++) {for (int j = 1; j <= bagSize; j++) {if (j < weight[i]) {/*** 当前背包的容量都没有当前物品i大的时候,是不放物品i的* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值*/dp[i][j] = dp[i-1][j];} else {/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:* 1、不放物品i* 2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);}}}// 打印dp数组for (int i = 0; i < goods; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}}
}
一维dp数组
对于背包问题其实状态都是可以压缩的。
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
- 确定dp数组的定义
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
- 一维dp数组的递推公式
dp[j]
可以通过dp[j - weight[i]]
推导出来,dp[j - weight[i]]
表示容量为j - weight[i]
的背包所背的最大价值。
dp[j - weight[i]] + value[i]
表示 容量为 j - 物品i重量 的背包 + 物品i的价值
。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j]
)
此时dp[j]
有两个选择,一个是取自己dp[j]
相当于 二维dp数组中的dp[i-1][j]
,即不放物品i,一个是取dp[j - weight[i]] + value[i]
,即放物品i,指定是取最大的,毕竟是求最大价值,
- 一维dp数组如何初始化
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
;
dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
- 一维dp数组遍历顺序
二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。
倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
- 举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWight = 4;testWeightBagProblem(weight, value, bagWight);}public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){int wLen = weight.length;//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值int[] dp = new int[bagWeight + 1];//遍历顺序:先遍历物品,再遍历背包容量for (int i = 0; i < wLen; i++){for (int j = bagWeight; j >= weight[i]; j--){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}//打印dp数组for (int j = 0; j <= bagWeight; j++){System.out.print(dp[j] + " ");}}
分割等和子集
416. 分割等和子集 - 力扣(LeetCode)
给你一个 只包含正整数 的 非空 数组 nums
。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
只有确定了如下四点,才能把01背包问题套到本题上来。
- 背包的体积为sum / 2
- 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
- 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
- 背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。
-
确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
本题中每一个元素的数值既是重量,也是价值。
套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
-
确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
-
dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,
从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
-
确定遍历顺序
如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
-
举例推导dp数组
dp[j]的数值一定是小于等于j的。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。
用例1,输入[1,5,11,5] 为例,如图:
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
一维dp数组
class Solution {public static boolean canPartition(int[] nums) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if(sum % 2 != 0) return false;int target = sum / 2;int[] dp = new int[target+1];for (int i = 0; i < nums.length; i++) {for (int j = target;j>=nums[i];j--) {if (j < nums[i]) {dp[j] = dp[j];} else {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}}return dp[target]==target;}
}
二维dp数组
class Solution {public boolean canPartition(int[] nums) {int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if(sum % 2 != 0) return false;int target = sum / 2;int[][] dp = new int[nums.length][target+1];for (int j = nums[0]; j <= target; j++) {dp[0][j] = nums[0];}for (int i = 1; i < nums.length; i++) {for (int j = 1; j <= target; j++) {if (j < nums[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);}}}return dp[nums.length-1][target]==target;}
}
相关文章:
算法训练营 day45 动态规划 0-1背包理论 分割等和子集
算法训练营 day45 动态规划 0-1背包理论 分割等和子集 0-1背包理论 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。 在下面的讲解中&…...
SSM框架
1.mybatis的底层原理 本质上就是使用反射和动态代理来实现对应的映射关系 2.日志级别 3.传递参数 单个参数的传递和多个参数的传递 Emp selectOne(Param(“xingming”) String name); List selectByCondition(Param(“name”) String name,Param(“sal”) double sal); 4.#和…...
教育行业需要什么样的客服系统?
某教育公司拥有素质教育、成人教育、智慧教育等多个业务板块,日常通过电商、线上媒体、线上线下授课等方式进行业务开展和品牌宣传,取得了非常不错的成绩,受到了很多人的好评反馈。 对于这样一个教育公司,客户来源广泛࿰…...
花房集团任命新首席财务官:已跌破IPO发行价,活跃用户下滑
上市刚满2个月,花椒母公司花房集团(HK:03611)的高管就发生了变更。2023年2月12日,花房集团披露的公告显示,董事会宣布赵磊为该公司首席财务官(CFO),自2023年2月10日起生效。 据贝多…...
儿童绘本馆图书借阅租赁知识付费小程序源码交流
1.分类图书 2.书单推荐 4.会员卡次、期限购买 5.借阅时间选择 6.积分签到 7.优惠Q领取 前端uniapp开发 后端thinkphp开发 完全开源 <template> <view class"sp-section sp-index"> <!-- search --> <view class&qu…...
Vue3 中 axios 的安装及使用
目录前言:一、什么是 axios ?二、Axios 的配置项三、Axios 的请求方式四、自定义创建实例五、Axios 请求错误处理六、Axios 解决跨域问题七、Axios 请求案例随机笑话大全总结:前言: 在编写vue里的项目时,必须要用和后台…...
Django设计模式以及模板层介绍
MVC和MTV 传统的MVC作用:降低模块间的耦合度(解耦)Django的MTV模式 作用:降低模块间的耦合度(解耦)什么是模板 1、模板是可以根据字典数据动态变化的html网页2、模板可以根据视图中传递的字典数据动态生成相…...
Linux信号一门搞定
1.信号是什么? 信号其实就是一个软件中断。 例: 输入命令,在Shell下启动一个前台进程。用户按下Ctrl-C,键盘输入产生一个硬件中断。如果CPU当前正在执行这个进程的代码,则该进程的用户空间代码暂停执行,…...
手撸一个动态Feign,实现一个“万能”接口调用
Feign,在微服务框架中,是的服务直接的调用变得很简洁、简单,而不需要再编写Java Http调用其他微服务的接口。 动态feign 对于fegin调用,我们一般的用法:为每个微服务都创建对应的feignclient接口,然后为每…...
Linux Capabilities 入门
目录 Linux capabilities 是什么? capabilities 的赋予和继承 线程的 capabilities Permitted Effective Inheritable Bounding Ambient 文件的 capabilities Permitted Inheritable Effective 运行 execve() 后 capabilities 的变化 案例 Linux capab…...
驱动 day6
关于设备树的理解: 设备树(Device Tree)是一种用于特定硬件设备的解释语法树。它用来表示存储有关主板硬件和CPU架构信息的数据在内核中的传递格式,使内核可以更好地了解硬件并支持它们,而不必编写固定的代码。设备节点…...
附录2-tensorflow目标检测
源码来自作者Bubbliiiing,我对参考链接的代码略有修改,网盘地址 链接:百度网盘 请输入提取码 提取码:dvb1 目录 1 参考链接 2 环境 3 数据集准备 3.1 VOCdevkit/VOC2007 3.2 model_data/voc_classes.txt 3.3 voc_an…...
常见的EMC问题
电磁兼容设计的目的就在于满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,并且使产品不会对系统中的其它设备产生电磁干扰。 电磁兼容设计中常见的问题有哪些? 1、电磁兼容设计可以从电路设计(包括器件选择&…...
Redis内存存储效率问题
目录 内存碎片是如何形成的? 如何判断是否有内存碎片? 如何清理内存碎片? INFO命令 面向 Prometheus 的 Redis-exporter 监控 实习期间,了解到,企业级开发中多个项目使用Redis,运行Redis实例的有可能是…...
3.28 haas506 2.0开发教程-example-蓝牙多设备扫描(仅支持M320,HD1)
haas506 2.0开发教程-example-蓝牙多设备扫描案例说明蓝牙信息克隆1.手机蓝牙改名信息克隆代码测试案例说明 开发板扫描蓝牙设备,获取并打印蓝牙设备mac地址。mac地址每个设备不同,且不能更改。本案例仅适用于M320开发板和HD1-RTU。案例使用手机与iBeac…...
C语言经典编程题100例(41~60)
目录41、习题4-4 特殊a串数列求和42、习题4-6 水仙花数43、习题4-7 最大公约数和最小公倍数44、习题7-5 找鞍点45、练习5-1 求m到n之和46、练习5-2 找两个数中最大者47、练习5-3 数字金字塔48、习题5-1 符号函数49、习题5-2 使用函数求奇数和50、习题5-3 使用函数计算两点间的距…...
git日常使用命令
实习这段时间使用了很多git指令来提交代码,简单记录一下日常使用的指令: 提交代码通常顺序: 1.git status 查看本地修改项 2.git add . 提交全部文件 (这个 .是全部文件)到暂存区 3.git commit -m ‘本次提交的说明’…...
ES6对象展开运算符浅拷贝or深拷贝
ES6中提出的对象展开运算符“…”就是用来展开元素的。有了它就不用代码循环遍历了,偷懒专用。 1. 合并数组 展开原有数组中的所有元素,可以合并成一个新的数组。 var a[1,2,3]; var b[4,5,6]; var c[...a,...b]; console.log(c) // 输出:…...
leaflet 上传包含shp的zip文件,在map上解析显示图形(059)
第059个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中本地上传包含shp的zip文件,利用shapefile读取shp数据,并在地图上显示图形。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果加载shapefile.js方式安装引用jszip(…...
CAN总线详细介绍
1.1 CAN是什么? CAN 最终成为国际标准 ( ISO11898(高速应用)和 ISO11519(低速应用)),是国际上应用最广泛的现场总线之一。 1.2 CAN总线特点 多主方式: 可以多主方式工作,网络上任意一个节点…...
python如何完成对 Excel文件的解密后读取?
通常为了防止重要的Excel文件数据内容的泄露,需要对文件整体进行加密与解密的操作。 对于文件的加解密过程,python也有很多非标准库来帮助我们完成操作,这里主要说明如何完成对Excel文件的解密与读取操作。 这里我们使用到的是msoffcrypto-…...
微服务实战--高级篇:RabbitMQ高级
服务异步通信-高级篇 消息队列在使用过程中,面临着很多实际问题需要思考: 1.消息可靠性 消息从发送,到消费者接收,会经理多个过程: 其中的每一步都可能导致消息丢失,常见的丢失原因包括: 发送…...
autoCAD2022 - 设置新的原点
文章目录autoCAD2022 - 设置新的原点概述笔记UCS原点设置功能的菜单位置ENDautoCAD2022 - 设置新的原点 概述 上次整板子的dxf时, 原来的原点不合适, 想调整一下. 当时整完了, 没记录. 这次用的时候, 又找半天… 设置新原点的功能, 不在顶部菜单中, 而是在视图右上角的UCS图标…...
spring boot 配置 mybatis-plus多数据源
简介Mybatis-puls 多数据源的使用,采用的是官方提供的dynamic-datasource-spring-boot-starter包的 DS 注解,具体可以参考官网:https://gitee.com/baomidou/dynamic-datasource-spring-boot-starterpom.xml文件引入如下依赖主要引入dynamic-d…...
独立产品灵感周刊 DecoHack #047 - 安卓手机上最有用的APP
本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。💻 产品推荐 1. Bouncer Tempor…...
【面试题】JavaScript中递归的理解
大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库递归 RecursionTo iterate is human, to recurse, divine. 理解迭代,神理解递归。本文会以 JavaScript为主、有部分 Rust 举例说明。…...
PyTorch学习笔记
PyTorch学习笔记(一):PyTorch环境安装 往期学习资料推荐: 1.Pytorch实战笔记_GoAI的博客-CSDN博客 2.Pytorch入门教程_GoAI的博客-CSDN博客 安装参考: 1.视频教程:3分钟深度学习【环境搭建】CUDA Anacon…...
SpringBoot2知识点记录
SpringBoot2知识点记录1.SpringBoot2基础入门1.1 环境要求1.1.1 maven设置1.2 第一个程序 HelloWorld1.2.1 创建maven工程1.2.2 引入依赖1.2.3 创建主程序1.2.4 编写业务1.2.5 测试1.2.6 简化配置1.2.7 简化部署1.3 自动装配1.3.1 SpringBoot特点1.3.1.1 依赖管理1.3.1.2 自动装…...
Mysql
1 Sql编写 count(*) //是对行数目进行计数 count(column_name) //是对列中不为空的行进行计数 SELECT COUNT( DISTINCT id ) FROM tablename; //计算表中id不同的记录有多少条 SELECT DISTINCT id, type FROM tablename; //返回表中id与type同时不同的结果 X.1 连表子查询 sel…...
Q4营收利润增长背后估值持续偏低,全球支付巨头PayPal前景如何?
作为国际版的“支付宝”,全球第三方支付巨头PayPal的业务横跨欧美市场,覆盖了全球200多个国家和地区。同时,PayPal也是首家进军中国支付市场的外资机构,实力强劲。然而,近两年,PayPal的市值一路从3000亿跌至…...
视频网站如何做营销策划/百度首页排名优化服务
目录1、筛选出"sh"列大于5的数据法一:直接筛选,适用于一些比较简单直接的筛选,这种方式方便快捷。法二:函数筛选,适用于比较复杂的条件筛选,函数除了可以使用lambda匿名函数以外,也可…...
网络营销有哪些方面/乐云seo官网
前段时间,张哥(stormzhang)团队的小伙伴,邀请我去做一次嘉宾分享。可能是因为我太久没写文章,结果一口气没憋住,写了2万多字!最后又进行了多次删改、提炼,又找了写作大佬帮我看&…...
wordpress 代码编写/网站权重查询工具
想要在mybatis 的collection关联查询中,添加一个常量:classifyId1作为参数,原先使用的添加方式为: <collection property"imageList" column"{aaaIdaaa_id,classifyId1}"javaType"ArrayList"se…...
教你做企业网站/百度指数免费查询
出自Robert Martin(罗伯特. 马丁)的《架构整洁之道》第三章设计原则,说明一下不是出自《代码整洁之道》,而且是5个原则,没有Law of Demeter:迪米特法则,我们通常说是六大设计原则,是…...
大型科技网站/网站推广线上推广
Java认证备考:谁将成为Java世界杯的巴西队?谁将是Java世界杯的巴西队?既不是Sun也不是甲骨文,而是SpringSource,这个开源公司的CEO罗德约翰森(Rod Johnson)如是说。来自市场分析机构的一份调查结果,以及与谷歌共同参与制定的Jav…...
可以做思维导图的网站/企业邮箱登录入口
Android源码目录下的build/envsetup.sh文件,描述编译的命令 - m: Makes from the top of the tree. - mm: Builds all of the modules in the current directory. - mmm: Builds all of the modules in the supplied directories. 要想使用这些命令&…...