【分布式搜索引擎ES01】
分布式搜索引擎ES
- 分布式搜索引擎ES
- 1.elasticsearch概念
- 1.1.ES起源
- 1.2.倒排索引
- 1.2.1.正向索引
- 1.2.2.倒排索引
- 1.3.es的一些概念
- 1.3.1.文档和字段
- 1.3.2.索引和映射
- 1.3.3.mysql与elasticsearch
- 1.4.1安装es、kibana、IK分词器
- 1.4.2扩展词词典与停用词词典
- 2.索引库操作
- 2.1.mapping映射属性
- 2.2.索引库的CRUD
- 2.2.1.创建索引库和映射
- 基本语法:
- 示例:
- 2.2.2.查询索引库
- 2.2.3.修改索引库
- 2.2.4.删除索引库
- 2.2.5.总结
- 3.文档操作
- 3.1.新增文档
- 3.2.查询文档
- 3.3.删除文档
- 3.4.修改文档
- 3.4.1.全量修改
- 3.4.2.增量修改
- 3.5.总结
- 4.RestAPI
- 4.0.导入Demo工程
- 4.0.1.导入数据
- 4.0.2.导入项目
- 4.0.3.mapping映射分析
- 4.0.4.初始化RestClient
- 4.1.创建索引库
- 4.1.1.代码解读
- 4.1.2.完整示例
- 4.2.删除索引库
- 4.3.判断索引库是否存在
- 4.4.总结
- 5.RestClient操作文档
- 5.1.新增文档
- 5.1.1.索引库实体类
- 5.1.2.语法说明
- 5.1.3.完整代码
- 5.2.查询文档
- 5.2.1.语法说明
- 5.2.2.完整代码
- 5.3.删除文档
- 5.4.修改文档
- 5.4.1.语法说明
- 5.4.2.完整代码
- 5.5.批量导入文档
- 5.5.1.语法说明
- 5.5.2.完整代码
- 5.6.小结
分布式搜索引擎ES
– elasticsearch基础
1.elasticsearch概念
1.1.ES起源
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。
elasticsearch的发展历史:
- 2004年Shay Banon基于Lucene开发了Compass
- 2010年Shay Banon 重写了Compass,取名为Elasticsearch。
总结
什么是elasticsearch?
- 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack(ELK)?
- 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch
什么是Lucene?
- 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API
1.2.倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
1.2.1.正向索引
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
1.2.2.倒排索引
倒排索引中有两个非常重要的概念:
- 文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。 - 词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排词条,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
-
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
-
倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
正向索引:
- 优点:
- 可以给多个字段创建索引
- 根据索引字段搜索、排序速度非常快
- 缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
倒排索引:
- 优点:
- 根据词条搜索、模糊搜索时,速度非常快
- 缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
1.3.es的一些概念
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
1.3.1.文档和字段
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中,而Json文档中往往包含很多的字段(Field),类似于数据库中的列。:
1.3.2.索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
- 所有用户文档,就可以组织在一起,称为用户的索引;
- 所有商品的文档,可以组织在一起,称为商品的索引;
- 所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
1.3.3.mysql与elasticsearch
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
-
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
-
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
- 对安全性要求较高的写操作,使用mysql实现
- 对查询性能要求较高的搜索需求,使用elasticsearch实现
- 两者再基于某种方式,实现数据的同步,保证一致性
1.4.1安装es、kibana、IK分词器
-
ik_smart:智能切分,粗粒度 eg:程序员分成程序员
-
ik_max_word:最细切分,细粒度 eg:程序员分成程序员,程序,员
测试代码(修改analyzer):
GET /_analyze
{"analyzer": "ik_max_word","text": "程序员"
}
1.4.2扩展词词典与停用词词典
词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)打开IK分词器config目录:
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置</comment><!--用户可以在这里配置自己的扩展字典--><entry key="ext_dict">ext.dic</entry><!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--><entry key="ext_stopwords">stopword.dic</entry>
</properties>
注意dic当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
2.索引库操作
索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。
2.1.mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
- properties:该字段的子字段
例如下面的json文档:
{"age": 21,"weight": 52.1,"isMarried": false,"info": "程序员Java","email": "zy@www.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}
对应的每个字段映射(mapping):
- age:类型为 integer;参与搜索,因此需要index为true;无需分词器
- weight:类型为float;参与搜索,因此需要index为true;无需分词器
- isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
- info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
- email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
- score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
- name:类型为object,需要定义多个子属性
- name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
- name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
2.2.索引库的CRUD
这里我们统一使用Kibana编写DSL的方式来演示。
2.2.1.创建索引库和映射
基本语法:
- 请求方式:PUT
- 请求路径:/索引库名,可以自定义
- 请求参数:mapping映射
格式:
PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}
示例:
PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type": "keyword","index": "falsae"},"name":{"properties": {"firstName": {"type": "keyword"}}},// ... 略}}
}
2.2.2.查询索引库
基本语法:
-
请求方式:GET
-
请求路径:/索引库名
-
请求参数:无
格式:
GET /索引库名
示例:
2.2.3.修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}
示例:
2.2.4.删除索引库
语法:
-
请求方式:DELETE
-
请求路径:/索引库名
-
请求参数:无
格式:
DELETE /索引库名
在kibana中测试:
2.2.5.总结
索引库操作有哪些?
- 创建索引库:PUT /索引库名
- 查询索引库:GET /索引库名
- 删除索引库:DELETE /索引库名
- 添加字段:PUT /索引库名/_mapping
3.文档操作
3.1.新增文档
语法:
POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}
示例:
POST /heima/_doc/1
{"info": "程序员Java","email": "zy@www.cn","name": {"firstName": "云","lastName": "赵"}
}
响应:
3.2.查询文档
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id}
通过kibana查看数据:
GET /heima/_doc/1
查看结果:
3.3.删除文档
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
示例:
# 根据id删除数据
DELETE /heima/_doc/1
结果:
3.4.修改文档
修改有两种方式:
- 全量修改:直接覆盖原来的文档
- 增量修改:修改文档中的部分字段
3.4.1.全量修改
全量修改是覆盖原来的文档,其本质是:
- 根据指定的id删除文档
- 新增一个相同id的文档
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}
示例:
PUT /heima/_doc/1
{"info": "程序员高级Java","email": "zy@www.cn","name": {"firstName": "云","lastName": "赵"}
}
3.4.2.增量修改
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}
示例:
POST /heima/_update/1
{"doc": {"email": "ZhaoYun@www.cn"}
}
3.5.总结
文档操作有哪些?
- 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
- 查询文档:GET /{索引库名}/_doc/文档id
- 删除文档:DELETE /{索引库名}/_doc/文档id
- 修改文档:
- 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
- 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}
4.RestAPI
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html
其中的Java Rest Client又包括两种:
- Java Low Level Rest Client
- Java High Level Rest Client
我们学习的是Java HighLevel Rest Client客户端API
4.0.导入Demo工程
4.0.1.导入数据
首先导入课前资料提供的数据库数据:
数据结构如下:
CREATE TABLE `tb_hotel` (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',`address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',`price` int(10) NOT NULL COMMENT '酒店价格;例:329',`score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',`brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',`city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',`star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',`business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',`latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',`longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',`pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
4.0.2.导入项目
然后导入课前资料提供的项目:
项目结构如图:
4.0.3.mapping映射分析
创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:
- 字段名
- 字段数据类型
- 是否参与搜索
- 是否需要分词
- 如果分词,分词器是什么?
其中:
- 字段名、字段数据类型,可以参考数据表结构的名称和类型
- 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
- 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
- 分词器,我们可以统一使用ik_max_word
来看下酒店数据的索引库结构:
PUT /hotel
{"mappings": {"properties": {"id": {"type": "keyword"},"name":{"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword","copy_to": "all"},"starName":{"type": "keyword"},"business":{"type": "keyword"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "ik_max_word"}}}
}
几个特殊字段说明:
- location:地理坐标,里面包含精度、纬度
- all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索
地理坐标说明:
copy_to说明:
4.0.4.初始化RestClient
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties><java.version>1.8</java.version><elasticsearch.version>7.12.1</elasticsearch.version>
</properties>
3)初始化RestHighLevelClient:
初始化的代码如下:
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")
));
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
package cn.www.hotel;import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;import java.io.IOException;public class HotelIndexTest {private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}
4.1.创建索引库
4.1.1.代码解读
创建索引库的API如下:
代码分为三步:
- 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
- 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
- 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
4.1.2.完整示例
在hotel-demo的cn.www.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:
package cn.www.hotel.constants;public class HotelConstants {public static final String MAPPING_TEMPLATE = "{\n" +" \"mappings\": {\n" +" \"properties\": {\n" +" \"id\": {\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"name\":{\n" +" \"type\": \"text\",\n" +" \"analyzer\": \"ik_max_word\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"address\":{\n" +" \"type\": \"keyword\",\n" +" \"index\": false\n" +" },\n" +" \"price\":{\n" +" \"type\": \"integer\"\n" +" },\n" +" \"score\":{\n" +" \"type\": \"integer\"\n" +" },\n" +" \"brand\":{\n" +" \"type\": \"keyword\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"city\":{\n" +" \"type\": \"keyword\",\n" +" \"copy_to\": \"all\"\n" +" },\n" +" \"starName\":{\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"business\":{\n" +" \"type\": \"keyword\"\n" +" },\n" +" \"location\":{\n" +" \"type\": \"geo_point\"\n" +" },\n" +" \"pic\":{\n" +" \"type\": \"keyword\",\n" +" \"index\": false\n" +" },\n" +" \"all\":{\n" +" \"type\": \"text\",\n" +" \"analyzer\": \"ik_max_word\"\n" +" }\n" +" }\n" +" }\n" +"}";
}
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:
@Test
void createHotelIndex() throws IOException {// 1.创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2.准备请求的参数:DSL语句request.source(MAPPING_TEMPLATE, XContentType.JSON);// 3.发送请求client.indices().create(request, RequestOptions.DEFAULT);
}
4.2.删除索引库
删除索引库的DSL语句非常简单:
DELETE /hotel
与创建索引库相比:
- 请求方式从PUT变为DELTE
- 请求路径不变
- 无请求参数
所以代码的差异,注意体现在Request对象上。依然是三步走:
- 1)创建Request对象。这次是DeleteIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用delete方法
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
@Test
void testDeleteHotelIndex() throws IOException {// 1.创建Request对象DeleteIndexRequest request = new DeleteIndexRequest("hotel");// 2.发送请求client.indices().delete(request, RequestOptions.DEFAULT);
}
4.3.判断索引库是否存在
判断索引库是否存在,本质就是查询,对应的DSL是:
GET /hotel
因此与删除的Java代码流程是类似的。依然是三步走:
- 1)创建Request对象。这次是GetIndexRequest对象
- 2)准备参数。这里是无参
- 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {// 1.创建Request对象GetIndexRequest request = new GetIndexRequest("hotel");// 2.发送请求boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);// 3.输出System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}
4.4.总结
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。
索引库操作的基本步骤:
- 初始化RestHighLevelClient
- 创建XxxIndexRequest。XXX是Create、Get、Delete
- 准备DSL( Create时需要,其它是无参)
- 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete
5.RestClient操作文档
为了与索引库操作分离,我们再次参加一个测试类,做两件事情:
- 初始化RestHighLevelClient
- 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package cn.www.hotel;import cn.www.hotel.pojo.Hotel;
import cn.www.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;import java.io.IOException;
import java.util.List;@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@BeforeEachvoid setUp() {this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.150.101:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}
5.1.新增文档
我们要将数据库的酒店数据查询出来,写入elasticsearch中。
5.1.1.索引库实体类
数据库查询后的结果是一个Hotel类型的对象。结构如下:
@Data
@TableName("tb_hotel")
public class Hotel {@TableId(type = IdType.INPUT)private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String longitude;private String latitude;private String pic;
}
与我们的索引库结构存在差异:
- longitude和latitude需要合并为location
因此,我们需要定义一个新的类型,与索引库结构吻合:
package cn.www.hotel.pojo;import lombok.Data;
import lombok.NoArgsConstructor;@Data
@NoArgsConstructor
public class HotelDoc {private Long id;private String name;private String address;private Integer price;private Integer score;private String brand;private String city;private String starName;private String business;private String location;private String pic;public HotelDoc(Hotel hotel) {this.id = hotel.getId();this.name = hotel.getName();this.address = hotel.getAddress();this.price = hotel.getPrice();this.score = hotel.getScore();this.brand = hotel.getBrand();this.city = hotel.getCity();this.starName = hotel.getStarName();this.business = hotel.getBusiness();this.location = hotel.getLatitude() + ", " + hotel.getLongitude();this.pic = hotel.getPic();}
}
5.1.2.语法说明
新增文档的DSL语句如下:
POST /{索引库名}/_doc/1
{"name": "Jack","age": 21
}
对应的java代码如图:
可以看到与创建索引库类似,同样是三步走:
- 1)创建Request对象
- 2)准备请求参数,也就是DSL中的JSON文档
- 3)发送请求
变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。
5.1.3.完整代码
我们导入酒店数据,基本流程一致,但是需要考虑几点变化:
- 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
- hotel对象需要转为HotelDoc对象
- HotelDoc需要序列化为json格式
因此,代码整体步骤如下:
- 1)根据id查询酒店数据Hotel
- 2)将Hotel封装为HotelDoc
- 3)将HotelDoc序列化为JSON
- 4)创建IndexRequest,指定索引库名和id
- 5)准备请求参数,也就是JSON文档
- 6)发送请求
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testAddDocument() throws IOException {// 1.根据id查询酒店数据Hotel hotel = hotelService.getById(61083L);// 2.转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 3.将HotelDoc转jsonString json = JSON.toJSONString(hotelDoc);// 1.准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());// 2.准备Json文档request.source(json, XContentType.JSON);// 3.发送请求client.index(request, RequestOptions.DEFAULT);
}
5.2.查询文档
5.2.1.语法说明
查询的DSL语句如下:
GET /hotel/_doc/{id}
非常简单,因此代码大概分两步:
- 准备Request对象
- 发送请求
不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
可以看到,结果是一个JSON,其中文档放在一个_source
属性中,因此解析就是拿到_source
,反序列化为Java对象即可。
与之前类似,也是三步走:
- 1)准备Request对象。这次是查询,所以是GetRequest
- 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
- 3)解析结果,就是对JSON做反序列化
5.2.2.完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testGetDocumentById() throws IOException {// 1.准备RequestGetRequest request = new GetRequest("hotel", "61082");// 2.发送请求,得到响应GetResponse response = client.get(request, RequestOptions.DEFAULT);// 3.解析响应结果String json = response.getSourceAsString();HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println(hotelDoc);
}
5.3.删除文档
删除的DSL为是这样的:
DELETE /hotel/_doc/{id}
与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:
- 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
- 2)准备参数,无参
- 3)发送请求。因为是删除,所以是client.delete()方法
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testDeleteDocument() throws IOException {// 1.准备RequestDeleteRequest request = new DeleteRequest("hotel", "61083");// 2.发送请求client.delete(request, RequestOptions.DEFAULT);
}
5.4.修改文档
5.4.1.语法说明
修改我们讲过两种方式:
- 全量修改:本质是先根据id删除,再新增
- 增量修改:修改文档中的指定字段值
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
- 如果新增时,ID已经存在,则修改
- 如果新增时,ID不存在,则新增
这里不再赘述,我们主要关注增量修改。
代码示例如图:
与之前类似,也是三步走:
- 1)准备Request对象。这次是修改,所以是UpdateRequest
- 2)准备参数。也就是JSON文档,里面包含要修改的字段
- 3)更新文档。这里调用client.update()方法
5.4.2.完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testUpdateDocument() throws IOException {// 1.准备RequestUpdateRequest request = new UpdateRequest("hotel", "61083");// 2.准备请求参数request.doc("price", "952","starName", "四钻");// 3.发送请求client.update(request, RequestOptions.DEFAULT);
}
5.5.批量导入文档
案例需求:利用BulkRequest批量将数据库数据导入到索引库中。
步骤如下:
-
利用mybatis-plus查询酒店数据
-
将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
-
利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
5.5.1.语法说明
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求:
可以看到,能添加的请求包括:
- IndexRequest,也就是新增
- UpdateRequest,也就是修改
- DeleteRequest,也就是删除
因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:
其实还是三步走:
- 1)创建Request对象。这里是BulkRequest
- 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
- 3)发起请求。这里是批处理,调用的方法为client.bulk()方法
我们在导入酒店数据时,将上述代码改造成for循环处理即可。
5.5.2.完整代码
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
@Test
void testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1.创建RequestBulkRequest request = new BulkRequest();// 2.准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 2.1.转换为文档类型HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 2.2.创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3.发送请求client.bulk(request, RequestOptions.DEFAULT);
}
5.6.小结
文档操作的基本步骤:
- 初始化RestHighLevelClient
- 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
- 准备参数(Index、Update、Bulk时需要)
- 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
- 解析结果(Get时需要)
相关文章:

【分布式搜索引擎ES01】
分布式搜索引擎ES 分布式搜索引擎ES1.elasticsearch概念1.1.ES起源1.2.倒排索引1.2.1.正向索引1.2.2.倒排索引 1.3.es的一些概念1.3.1.文档和字段1.3.2.索引和映射1.3.3.mysql与elasticsearch 1.4.1安装es、kibana、IK分词器1.4.2扩展词词典与停用词词典 2.索引库操作2.1.mappi…...

1.3 鞅、停时和域流-鞅(布朗运动与随机计算【习题解答】)
Let X = ( x n , F n ) , n = 1 , ⋯ , N X=\left(x_n, \mathcal{F}_n\right), n=1, \cdots, N X...

十、ElasticSearch 实战 - 源码运行
一、概述 想深入理解 Elasticsearch,了解其报错机制,并有针对性的调整参数,阅读其源码是很有必要的。此外,了解优秀开源项目的代码架构,能够提高个人的代码架构能力 阅读 Elasticsearch 源码的第一步是搭建调试环境&…...

GPT-3 论文阅读笔记
GPT-3模型出自论文《Language Models are Few-Shot Learners》是OpenAI在2020年5月发布的。 论文摘要翻译:最近的工作表明,通过对大量文本进行预训练,然后对特定任务进行微调(fine-tuning),在许多NLP任务和基准测试上…...

方案解析丨数字人主播如何成为电商直播新标配
浙江省政府办公厅近日印发《关于进一步扩大消费促进高质量发展若干举措》支持电子商务直播发展。抢抓电子商务直播快速发展机遇,发展数字人虚拟主播、元宇宙新消费场景等新业态新模式。 随着电商直播快速发展,企业怎么高效地实现引流获客,成为…...

Python最全迭代器有哪些?
python中迭代器的使用是最广泛的,凡是使用for语句,其本质都是迭代器的应用。 从代码角度看,迭代器是实现了迭代器协议的对象或类。迭代器协议方法主要是两个: __iter__()__next__() __iter__()方法返回对象本身,他是…...

ESP32 网络计时器,包含自动保存
简介 本代码是基于ESP32开发板实现的一个计时器功能,具备倒计时、计时器时长选择、显示当前时间、有源蜂鸣器报警等功能。代码中使用了WiFi网络连接、NTP时间同步、EEPROM存储等功能。通过按钮控制计时器的开始、停止和计时器时长的选择。 运行原理概述 在ESP32开…...

【ChatGPT】阿里版 ChatGPT 突然官宣意味着什么?
Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员,2024届电子信息研究生 目录 阿里版 ChatGPT 突然官宣 ChatGPT 技术在 AI 领域的重要性 自然语言生成 上下文连续性 多语言支持 ChatGPT 未来可能的应用场景 社交领域 商业领域 编辑 医疗领域…...

IPEmotion控制模块-PID循环应用
IPEmotion专业版、开发版支持控制模块,并且该模块支持函数发生器、PID控制器、路由器、序列控制和序列控制块以及参考曲线生成器。本文主要针对PID(P:Proportional control 比例控制;I:Integral control 积分控制&…...

【元分析研究方法】学习笔记2.检索文献(含100种学术文献搜索清单链接)
检索文献 该步骤的作用该步骤中需要注意的问题该步骤中部分知识点我的收获 参考来源:库珀 (Cooper, H. M. )., 李超平, & 张昱城. (2020). 元分析研究方法: A step-by step approach. 中国人民大学出版社. 该步骤的作用 1.识别相关文献的来源; 2.识别…...

题目:16版.自由落体
1、实验要求 本实验要求:模拟物体从10000米高空掉落后的反弹行为。 1-1. 创建工程并配置环境: 1-1.1. 限制1. 工程取名:SE_JAVA_EXP_E009。 1-1.2. 限制2. 创建包,取名:cn.campsg.java.experiment。 1-1.3. 限制3. 创建…...

视频可视化搭建项目,通过简单拖拽方式快速生产一个短视频
一、开源项目简介 《视搭》是一个视频可视化搭建项目。您可以通过简单的拖拽方式快速生产一个短视频,使用方式就像易企秀或百度 H5 等 h5 搭建工具一样的简单。目前行业内罕有关于视频可视化搭建的开源项目,《视搭》是一个相对比较完整的开源项目&#…...

network-1 4 layer internet model
4layer model applicationtransport tcp: transmission control protocol enable correct in-order delivery of data, running on top of the network layer service.udp: user datagram protocolnetwork packet:data、from、tonetwork->linkiplink source en…...

计算机网络笔记(横向)
该笔记也是我考研期间做的整理。一般网上的笔记是按照章节纪录的,我是按照知识点分类纪录的,大纲如下: 文章目录 1. 各报文1.1 各报文头部详解1.2 相关口诀 2. 各协议2.1 各应用层协议使用的传输层协议与端口2.2 各协议的过程2.2.1 数据链路层…...

0.redis-实践
1.redis内存设置多少,默认是0,不限制 2.如何配置,修改内存大小 1) 查看最大占用内存 # maxmeory <bytes> 或者 config get maxmemory 2) 默认内存多少可以用: 64位系统下不限制,32位下最多3G 3) 如何配置: 默认总内存的3/4 4) 如何修改…...

Redux的基本使用,从入门到入土
目录 一、初步使用Redux 1.安装Redux 2.配置状态机 二、Redux的核心概念 1.工作流程 2.工作流程 三、优化Redux 1.对action进行优化 2.type常量 3.reducer优化 四、react-redux使用 1.安装react-redux 2.全局注入store仓库 3.组件关联仓库 五、状态机的Hook 1.u…...

GDOUCTF2023-部分re复现
目录 [GDOUCTF 2023]Check_Your_Luck [GDOUCTF 2023]Tea [GDOUCTF 2023]doublegame [GDOUCTF 2023]Check_Your_Luck 打开题目是一串代码,明显的z3约束器求解 直接上脚本 import z3 from z3 import Reals z3.Solver() vReal(v) xReal(x) yReal(y) wReal(w) zRea…...

Java学习17(IO模型详解)
1、何为IO? I/O(Input/Outpu) 即输入/输出 。 从计算机结构的角度来解读一下 I/O。 根据冯.诺依曼结构,计算机结构分为 5 大部分:运算器、控制器、存储器、输入设备、输出设备。 输入设备(比如键盘&am…...

Vue-全局过滤器以及进阶操作
前言 上篇文件讲述了,Vue全局过滤器的基本使用:Vue过滤器的基本使用 本篇将延续上文,讲述vue中过滤器的进阶操作 过滤器传参 如果有一天,多个地方使用过滤器,而且需要传递参数,那么可以这么写 多个过滤…...

财报解读:涅槃重生之后,新东方还想再造一个“文旅甄选”?
新东方逐渐走出了“微笑曲线”。 图源:新东方2023财年Q3财报 2023年4月19日,新东方披露了2023财年Q3财报(截至2023年2月28日止),营收7.5亿美元,同比增长22.8%;归母净利润为8165万美元ÿ…...

华为OD机试 - 过滤组合字符串(Python)
题目描述 每个数字关联多个字母,关联关系如下: 0 关联 “a”,”b”,”c” 1 关联 “d”,”e”,”f” 2 关联 “g”,”h”,”i” 3 关联 “j”,”k”,”l” 4 关联 “m”,”n”,”o” 5 关联 “p”,”q”,”r” 6 关联 “s”,”t” 7 关联 “u”,”v” 8 关联 “w”,”x” 9 …...

maven简单使用
实验课的作业用一大堆框架/库,统统要用maven管理。 头一次用,真痛苦。 所幸得以解决,maven真香~ 一步一步来。 1. maven 不是java人,只能说说粗浅的理解了。 简单来说,maven是一个管理项目的工具&…...

HTML学习笔记一
目录 HTML学习笔记 一、HTML标签 1、HTML语法规范 1.1标签的语法概述 1.2标签关系 2、HTML基本结构标签 2.1第一个HTML 2.2基本结构标签总结 3、开发工具 4、HTML常用标签 4.1标签的语义 4.2标题标签 4.3段落和换行标签 4.4文本格式化标签 4.5div和span标签 4.…...

人工智能十大流行算法,通俗易懂讲明白
人工智能是什么?很多人都知道,但大多又都说不清楚。 事实上,人工智能已经存在于我们生活中很久了。 比如我们常常用到的邮箱,其中垃圾邮件过滤就是依靠人工智能;比如每个智能手机都配备的指纹识别或人脸识别&#x…...

支持中英双语和多种插件的开源对话语言模型,160亿参数
一、开源项目简介 MOSS是一个支持中英双语和多种插件的开源对话语言模型,moss-moon系列模型具有160亿参数,在FP16精度下可在单张A100/A800或两张3090显卡运行,在INT4/8精度下可在单张3090显卡运行。MOSS基座语言模型在约七千亿中英文以及代码…...

SQL基础培训10-复杂查询原理
知识点: 1、SQL查询语句逻辑执行顺序 下面是一个查询语句的逻辑执行顺序(每段语句都标明了执行顺序号): 执行1:FROM 执行2:...

如何搭建信息存储中心?资源共享方案之搭建ftp个人服务器
serveru是一款由Rob Beckers开发的ftp服务器软件,全称为:serv-u ftp server,它功能强大又易于使用。ftp服务器用户通过ftp协议能在internet上共享文件。FTP协议是专门针对在两个系统之间传输大的文件开发出来的,它是TCP/IP协议的一…...

【LeetCode】188. 买卖股票的最佳时机 IV
188. 买卖股票的最佳时机 IV(困难) 思路 状态定义 一、首先确定要一天会有几种状态,不难想到有四种: a.当天买入了股票;b.当天卖出了股票;c.当天没有操作,但是之前是买入股票的状态ÿ…...

android studio RadioButton单选按钮
1.定义 <!--单选按钮--> <TextViewandroid:layout_marginTop"10dp"android:layout_width"match_parent"android:layout_height"wrap_content"android:text"请选择你的性别:"> </TextView> <RadioGrou…...

AI大模型快速发展,我们该如何应对?
文章目录 提问问题范例Prompt 公式 如何准确提问 随着人工智能技术的不断发展,聊天型大语言模型工具如 ChatGPT 在解决各种实际问题时具有越来越广泛的应用。这一技术的快速发展,不仅带来了更高的工作效率和更高的精度,同时也改变了人类的工作…...