当前位置: 首页 > news >正文

2023五一数学建模竞赛(五一赛)选题建议

提示:DS C君认为的难度:C<A<B,开放度:B<A<C 。

A题:无人机定点投放问题

这道题是传统的物理类题目,基本每次建模竞赛都会有。由于这道题目并未给明数据,所以数据获取和搜集资料是前期最重要的工作。可以使用到模拟仿真来进行求解。这道题目由于太过公式化,存在最优解。如果你要参加国赛,选择这道题不会有很好的训练效果。寻找因素之间的关系可以用的方法为:

1相关性分析:通过计算两个变量之间的相关系数,可以确定它们之间的关系。相关系数可以用来衡量两个变量之间的线性关系。

2回归分析:回归分析可以用来确定一个因变量和一个或多个自变量之间的关系。它可以用来预测因变量的值,并确定自变量对因变量的影响。

3因子分析:因子分析可以用来确定一组变量之间的关系,并找出它们之间的共同因素。它可以用来简化数据集,并找出变量之间的主要关系。

4聚类分析:聚类分析可以用来确定一组变量之间的相似性,并将它们分成不同的组。它可以用来识别数据集中的模式和趋势。

5决策树分析:决策树分析可以用来确定一组变量之间的关系,并找出它们之间的重要性。它可以用来预测因变量的值,并确定自变量之间的相互作用。

这里在对无人机的稳定性进行分析验证,可以使用数值仿真。具体的可以以以下方式进行分析:建立无人机动力学模型。无人机动力学模型可以基于欧拉角描述无人机的姿态运动,并考虑无人机的质量、惯性矩阵、推力、气动力等因素。

1根据无人机动力学模型,编写计算机程序进行数值仿真。数值仿真可以采用数值解法,例如四阶龙格-库塔法等,对无人机的姿态、速度等状态进行时间积分。

2在数值仿真中引入外部扰动,例如风速、气流等,以评估无人机的稳定性。可以通过对无人机初始状态进行微小扰动,观察无人机在扰动下的响应,例如姿态角偏差、速度变化等,并分析其稳定性。

3对无人机的控制系统进行数值仿真,例如基于PID控制器的控制系统,以评估控制系统的效果和稳定性。可以通过调节控制参数,观察无人机的响应,并分析其稳定性。

4根据仿真结果,优化无人机的设计和控制系统。通过对仿真结果进行分析,可以发现无人机的弱点和不足,并提出优化方案。例如,可以调整无人机的设计参数,例如质量分布、推力布局等,以提高其稳定性;或者改进控制系统的算法和参数,以提高其控制精度和稳定性。

5进行实际试飞验证。在完成仿真验证后,可以对无人机进行实际试飞,并记录其姿态、速度、加速度等状态,并与仿真结果进行比较,以验证仿真结果的准确性和可靠性。

这道题目的开放程度低,难度适中,建议数学、物理等相关专业同学选择。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

B题:快递需求分析问题

这道题是传统的运筹学+数据分析类题目,具体的,建议利用lingo、matlab进行求解。题目里涉及到图论知识,需要团队成员至少学过相关内容,这里对第一问做一些简单分析(详细分析见企鹅)。为了建立数学模型对各站点城市的重要程度进行综合排序,可以采用以下步骤:

步骤1:数据预处理

对数据进行清洗和整理,统计每个站点城市的收货量、发货量、快递数量等指标,计算每个站点城市的平均收发量和快递量,以便后续分析。

步骤2:相关性分析

计算各站点城市之间收发量、快递量之间的相关系数,找出相关性较强的城市对,以便后续分析。

步骤3:建立模型

基于各站点城市的收发量、快递量等指标,建立数学模型,评估各站点城市的重要程度。

可以采用TOPSIS等多种评估方法,对各站点城市进行综合评估,得出综合排序结果。

步骤4:结果分析

根据综合排序结果,得出重要程度排名前5的站点城市名称。

这道题目还是需要一定的基本功,或者网上获取资源的能力的。推荐数学、统计学等相关专业同学选择。难度适中,开放度偏低。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

C题:“双碳”目标下低碳建筑研究

这道题目就是传统的数据分析题目了,在每次数模竞赛中都会出现此类题目,推荐大家选择。首先,我们需要计算出该建筑物每个月的能量需求,以便计算通过空调调节温度的能源消耗和相应的碳排放量。由于该建筑物的墙、屋顶、门窗和地面都有不同的热导系数,我们需要分别计算它们的热传导系数。

热传导系数指的是单位时间内热通过单位面积的传导热流量,公式为:q=kA(T1-T2)/d,其中,q为热流量,k为热传导系数,A为面积,T1和T2为两端温度,d为距离。根据该公式,我们可以计算出该建筑物的墙、屋顶、门窗和地面的热传导系数。

寻找因素之间的关系可以用的方法可以看前面A题部分的分析,这里不再赘述。评价方法推荐灰色综合评价法、模糊综合评价法等。对于最后需要预测的数据可以使用随机森林、xgboost、神经网络等机器学习方法进行预测。对于评价模型的有效性进行验证,可以使用以下的步骤:

1 划分数据集:将数据集分成训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型的超参数,测试集用于评估模型的性能。

2 选择评价指标:选择适当的评价指标来度量模型的性能。不同的任务和模型可能需要使用不同的评价指标。例如,在分类任务中,可以使用准确率、精确率、召回率和F1分数等指标。

3 训练模型:使用训练集训练模型,并使用验证集来调整模型的超参数,如学习率、批量大小、隐藏层数等。这可以帮助模型更好地适应数据并提高模型的性能。

4 测试模型:使用测试集来评估模型的性能。可以计算模型在测试集上的评价指标,以确定模型是否具有良好的泛化能力。

5 交叉验证:使用交叉验证方法来验证模型的有效性。交叉验证将数据集划分成多个子集,并在这些子集上进行多次训练和测试,以避免因数据划分不合理而导致的偏差。

6 对比实验:通过对比实验来验证模型的有效性。可以使用不同的模型、不同的特征工程方法、不同的超参数等来训练模型,并对比它们在同一数据集上的性能,以确定哪种方法最有效。

这道题目开放度较高,难度较易,是本次比赛练手和获奖的首选题目。推荐所有专业同学选择。

有关思路、相关代码、讲解视频、参考文献等相关内容可以点击下方群名片哦!

相关文章:

2023五一数学建模竞赛(五一赛)选题建议

提示&#xff1a;DS C君认为的难度&#xff1a;C<A<B&#xff0c;开放度&#xff1a;B<A<C 。 A题&#xff1a;无人机定点投放问题 这道题是传统的物理类题目&#xff0c;基本每次建模竞赛都会有。由于这道题目并未给明数据&#xff0c;所以数据获取和搜集资料是…...

Packet Tracer - 配置 RIPv2

Packet Tracer - 配置 RIPv2 目标 第 1 部分&#xff1a;配置 RIPv2 第 2 部分&#xff1a;验证配置 拓扑图 背景信息 尽管在现代网络中极少使用 RIP&#xff0c;但是作为了解基本网络路由的基础则十分有用。 在本活动中&#xff0c;您将使用适当的网络语句和被动接口配置…...

Android类似微信聊天页面教程(Kotlin)四——数据本地化

前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …...

C/C++基础知识

专栏&#xff1a;C/C 个人主页&#xff1a; C/C基础知识 前言C关键字(C98)命名空间命名空间的定义正常的命名空间的定义如何使用命名空间 命名空间可以嵌套同一个工程中允许存在多个相同名称的命名空间&#xff0c;编译器最后会合成同一个命名空间中(一个工程中的.h文件和test.…...

Java 入门 - 语法基础

hello world public class Hello {public static void main(String[] args) {System.out.println("hello world");} } 复制代码 public: 是关键字&#xff1b;表示公开的class: 是关键字&#xff1b;用来定义类Hello: 是类名&#xff1b;大小写敏感&#xff1b;命名…...

Java线程池及拒绝策略详解

前文提到线程的使用以及线程间通信方式&#xff0c;通常情况下我们通过new Thread或者new Runnable创建线程&#xff0c;这种情况下&#xff0c;需要开发者手动管理线程的创建和回收&#xff0c;线程对象没有复用&#xff0c;大量的线程对象创建与销毁会引起频繁GC&#xff0c;…...

GitLABJenkins

GitLAB & Jenkins 目录 实践&#xff1a;基于Jenkins提交流水线(测试成功)-2023.4.25 目的&#xff1a;掌握通过触发器将GitLab和Jenkins集成&#xff0c;实现提交流水线。 1、触发Jenkins构建 安装Generic Webhook Trigger插件 重启后&#xff0c;进入一个Pipeline项目设…...

互联网摸鱼日报(2023-04-26)

互联网摸鱼日报&#xff08;2023-04-26&#xff09; InfoQ 热门话题 神州数码&#xff1a;抢抓云原生发展机遇&#xff0c;共建共治共享 OpenNJet 应用引擎开源生态 《产业数字人才研究与发展报告&#xff08;2023&#xff09;》 如何写出CPU友好的代码&#xff0c;百倍提升…...

石化企业数字化防爆融合通信解决方案

项目背景 石化工业是我国国民经济和社会发展的基础性、战略性产业&#xff0c;其发展和壮大受到了党和国家的高度重视。随着石化企业厂区规模的不断扩大以及技术的快速发展&#xff0c;现有石化企业专网通信系统建设相对滞后&#xff0c;缺乏结合人员管理、安全生产、安全通信…...

NTT学习笔记(快速数论变换)

一些概念 欧拉函数 ϕ ( n ) \phi(n) ϕ(n) 欧拉函数简介 阶 若 g g g和 n n n互质&#xff0c;则令 g x % n 1 g^x\%n1 gx%n1的最小正整数 x x x称为 g g g模 n n n的阶。 原根 对于互质的两个正整数 g g g和 n n n&#xff0c;如果 g g g模 n n n的阶为 ϕ ( n ) \phi…...

Android类似微信首页的页面开发教程(Kotlin)二

前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …...

PAt A1015 Reversible Primes

1015 Reversible Primes 分数 20 作者 CHEN, Yue 单位 浙江大学 A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its rever…...

解决Lemuroid识别不到蓝牙键盘的问题

Android系统基于libretro的全能游戏模拟器&#xff0c;目前有RetroArch&#xff0c;Kodi&#xff0c;Lemuroid。 而且这三个都是开源免费的APP。 Lemuroid相对前面两个功能比较简陋。也不能自己下载核心。但代码也是最少的。 在使用Lemuroid的时候&#xff0c;发现它不能检测…...

SpringBoot 使用 Sa-Token 完成权限认证

一、设计思路 所谓权限认证&#xff0c;核心逻辑就是判断一个账号是否拥有指定权限&#xff1a; 有&#xff0c;就让你通过。没有&#xff1f;那么禁止访问&#xff01; 深入到底层数据中&#xff0c;就是每个账号都会拥有一个权限码集合&#xff0c;框架来校验这个集合中是…...

Spring核心与设计思想、创建与使用

文章目录 一、Spring是什么二、为什么要学习框架三、IoC和DI&#xff08;一&#xff09;IoC1. 认识IoC2. Spring的核心功能 &#xff08;二&#xff09;DI 四、Spring项目的创建&#xff08;一&#xff09;使用 Maven 方式创建一个 Spring 项目 五、Spring项目的使用&#xff0…...

mysql 备份 还原

1:备份 执行命令方案1: /usr/local/mysql/bin/mysqldump -uX -pX -h 127.0.0.1 --set-gtid-purgedOFF --skip-extended-insert --add-drop-table --add-locks --create-options --disable-keys --lock-tables --quick --set-charset -e --max_allowed_packet16777216 --net_b…...

每日学术速递4.26

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.AutoNeRF: Training Implicit Scene Representations with Autonomous Agents 标题&#xff1a;AutoNeRF&#xff1a;使用自主代理训练隐式场景表示 作者&#xff1a;Pierre Marz…...

RabbitMQ使用StringRedisTemplate-防止重复消费

造成重复消费的原因&#xff1a; MQ向消费者推送message&#xff0c;消费者向MQ返回ack&#xff0c;告知所推送的消息消费成功。但是由于网络波动等原因&#xff0c;可能造成消费者向MQ返回的ack丢失。MQ长时间&#xff08;一分钟&#xff09;收不到ack&#xff0c;于是会向消…...

临沂大学张继群寄语

目录 寄语 1、不能有不良睹好 2、坚毅的个性和勤奋的品质 3、会存钱...

线程学习笔记

1:Thread 线程的生命周期控制 2:Runnable 可执行的任务和程序 3:Callable 执行程序后返回结果 4:Future 收集程序返回结果 5:Executor 线程池 6:ForkJoin 默认线程池 每个线程有工作队列 工作窃取 7:RunnableFuture FutureTask 实现 Runnable 和 Future 执…...

代码随想录算法训练营第四十二天|01背包问题,你该了解这些!、01背包问题,你该了解这些! 滚动数组 、416. 分割等和子集

文章目录 01背包问题&#xff0c;你该了解这些&#xff01;01背包问题&#xff0c;你该了解这些&#xff01; 滚动数组416. 分割等和子集 01背包问题&#xff0c;你该了解这些&#xff01; 题目链接&#xff1a;代码随想录 二维数组解决0-1背包问题 解题思路&#xff1a; 1.dp…...

结构体指针、数组指针和结构体数组指针

结构体指针 首先让我们定义结构体&#xff1a; struct stu { char name[20]; long number; float score[4]; }; 再定义指向结构体类型变量的指针变量&#xff1a; struct stu *student; /*定义结构体类型指针*/ student malloc(sizeof(struct stu)); /*为指针变量分…...

项目架构一些注意点

考虑系统的 稳定性 一、微服务的稳定性 1、如何解决那些不稳定的因素/问题&#xff1f;也是常说的如何容错。 2、一个系统的高可用取决于它本身和其强依赖的组件的高可用 3、消除单点 保活机制 健康检查 注册中心如何保障稳定性 注册中心集群 微服务本身对注册信息的本地持…...

Forefront GPT-4免费版:开启无限畅聊时代,乐享人工智能快感,无限制“白嫖”,还能和N多角色一起聊天?赶紧注册,再过些时间估计就要收费了

目录 前言注册登录方式应用体验聊天体验绘图体验 “是打算先免费后收费吗&#xff1f;”建议其它资料下载 前言 近期&#xff0c;人工智能技术迎来重大飞跃&#xff0c;OpenAI的ChatGPT等工具成为全球数亿人探索提高生产力和增强创造力的新方法。人们现在可以使用人工智能驱动…...

深入浅出 Compose Compiler(1) Kotlin Compiler KCP

前言 Compose 的语法简洁、代码效率非常高&#xff0c;这主要得益于 Compose Compiler 的一系列编译期魔法&#xff0c;帮开发者生成了很多样板代码。但编译期插桩也阻碍了我们对于 Compose 运行原理的认知&#xff0c;想要真正读懂 Compose 就必须先了解它的 Compiler。本系列…...

BatchNormalization和LayerNormalization的理解、适用范围、PyTorch代码示例

文章目录 为什么要NormalizationBatchNormLayerNormtorch代码示例 学习神经网络归一化时&#xff0c;文章形形色色&#xff0c;但没找到适合小白通俗易懂且全面的。学习过后&#xff0c;特此记录。 为什么要Normalization 当输入数据量级极大或极小时&#xff0c;为保证输出数…...

大数据 | 实验二:文档倒排索引算法实现

文章目录 &#x1f4da;实验目的&#x1f4da;实验平台&#x1f4da;实验内容&#x1f407;在本地编写程序和调试&#x1f955;代码框架思路&#x1f955;代码实现 &#x1f407;在集群上提交作业并执行&#x1f955;在集群上提交作业并执行&#xff0c;同本地执行相比即需修改…...

Java文档注释-JavaDoc标签

标签含义author指定作者{code}使用代码字体以原样显示信息&#xff0c;不处理HTML样式deprecated指定程序元素已经过时{docRoot}指定当前文档的根目录路径exception标识由方法或构造函数抛出的异常{inheritDoc}从直接超类中继承注释{link}插入指向另外一个主题的内联链接{linkp…...

黑盒测试过程中【测试方法】详解5-输入域,输出域,猜错法

在黑盒测试过程中&#xff0c;有9种常用的方法&#xff1a;1.等价类划分 2.边界值分析 3.判定表法 4.正交实验法 5.流程图分析 6.因果图法 7.输入域覆盖法 8.输出域覆盖法 9.猜错法 黑盒测试过程中【测试方法】讲解1-等价类&#xff0c;边界值&#xff0c;判定表_朝一…...

Python学习之sh(shell脚本)在Python中的使用

文章目录 前言一、sh是什么&#xff1f;二、使用步骤1.安装2.使用示例3.使用sh执行命令4.关键字参数5.查找命令6.Baking参数 前言 本文章向大家介绍[Python库]分析一个python库–sh&#xff08;系统调用&#xff09;&#xff0c;主要内容包括其使用实例、应用技巧、基本知识点…...