当前位置: 首页 > news >正文

漫谈大数据 - 数据湖认知篇

        导语:数据湖是目前比较热的一个概念,许多企业都在构建或者准备构建自己的数据湖。但是在计划构建数据湖之前,搞清楚什么是数据湖,明确一个数据湖项目的基本组成,进而设计数据湖的基本架构,对于数据湖的构建至关重要。

目录

数据湖定义

Wikipedia

AWS

微软

定义概括

数据湖基本特征

数据方面

保真

灵活

可管理

可追溯

计算方面

计算引擎

存储引擎

数据湖基本架构

数据湖架构图

数据湖建设的基本过程

数仓建设过程

数据摸底

模型抽象

数据接入

融合治理

业务支撑

数据湖建设过程

数据摸底

技术选型

数据接入

融合治理

小结


数据湖定义

Wikipedia

        数据湖是一类存储数据自然/原始格式的系统或存储,通常是对象块或者文件。数据湖通常是企业中全量数据的单一存储。全量数据包括原始系统所产生的原始数据拷贝以及为了各类任务而产生的转换数据,各类任务包括报表、可视化、高级分析和机器学习。数据湖中包括来自于关系型数据库中的结构化数据(行和列)、半结构化数据(如CSV、日志、XML、JSON)、非结构化数据(如email、文档、PDF等)和二进制数据(如图像、音频、视频)。

        数据沼泽是一种退化的、缺乏管理的数据湖,数据沼泽对于用户来说要么是不可访问的要么就是无法提供足够的价值。

AWS

        数据湖是一个集中式存储库,允许您以任意规模存储所有结构化和非结构化数据。您可以按原样存储数据(无需先对数据进行结构化处理),并运行不同类型的分析 – 从控制面板和可视化到大数据处理、实时分析和机器学习,以指导做出更好的决策。

微软

        数据湖包括一切使得开发者、数据科学家、分析师能更简单的存储、处理数据的能力,这些能力使得用户可以存储任意规模、任意类型、任意产生速度的数据,并且可以跨平台、跨语言的做所有类型的分析和处理。数据湖在能帮助用户加速应用数据的同时,消除了数据采集和存储的复杂性,同时也能支持批处理、流式计算、交互式分析等。数据湖能同现有的数据管理和治理的IT投资一起工作,保证数据的一致、可管理和安全。它也能同现有的业务数据库和数据仓库无缝集成,帮助扩展现有的数据应用。

定义概括

        百家之言,关于数据湖的定义其实很多,但是基本上都围绕着几个特性展开,我们现在就来总结一下。

  • 数据湖需要提供足够用的数据存储能力,这个存储保存了一个企业/组织中的所有数据。
  • 数据湖可以存储海量的任意类型的数据,包括结构化、半结构化和非结构化数据。
  • 数据湖中的数据是原始数据,是业务数据的完整副本。数据湖中的数据保持了他们在业务系统中原来的样子。
  • 数据湖需要具备完善的数据管理能力(完善的元数据),可以管理各类数据相关的要素,包括数据源、数据格式、连接信息、数据schema、权限管理等。
  • 数据湖需要具备多样化的分析能力,包括但不限于批处理、流式计算、交互式分析以及机器学习;同时,还需要提供一定的任务调度和管理能力。
  • 数据湖需要具备完善的数据生命周期管理能力。不光需要存储原始数据,还需要能够保存各类分析处理的中间结果,并完整的记录数据的分析处理过程,能帮助用户完整详细追溯任意一条数据的产生过程。
  • 数据湖需要具备完善的数据获取和数据发布能力。数据湖需要能支撑各种各样的数据源,并能从相关的数据源中获取全量/增量数据;然后规范存储。数据湖能将数据分析处理的结果推送到合适的存储引擎中,满足不同的应用访问需求。

        所以,数据湖应该是一种不断演进中、可扩展的大数据存储、处理、分析的基础设施;以数据为导向,实现任意来源、任意速度、任意规模、任意类型数据的全量获取、全量存储、多模式处理与全生命周期管理;并通过与各类外部异构数据源的交互集成,支持各类企业级应用。


数据湖基本特征

数据方面

保真

        数据湖中对于业务系统中的数据都会存储一份“一模一样”的完整拷贝。与数据仓库不同的地方在于,数据湖中必须要保存一份原始数据,无论是数据格式、数据模式、数据内容都不应该被修改。在这方面,数据湖强调的是对于业务数据“原汁原味”的保存。同时,数据湖应该能够存储任意类型/格式的数据。

灵活

        既然没办法预估业务的变化,那么索性保持数据最为原始的状态,一旦需要时,可以根据需求对数据进行加工处理。因此,数据湖更加适合创新型企业、业务高速变化发展的企业。同时,数据湖的用户也相应的要求更高,数据科学家、业务分析师(配合一定的可视化工具)是数据湖的目标客户。

可管理

        数据湖中会存在两类数据:原始数据和处理后的数据。数据湖中的数据会不断的积累、演化。因此,对于数据管理能力也会要求很高,至少应该包含以下数据管理能力:数据源、数据连接、数据格式、数据schema(库/表/列/行)。同时,数据湖是单个企业/组织中统一的数据存放场所,因此,还需要具有一定的权限管理能力。

可追溯

        数据湖是一个组织/企业中全量数据的存储场所,需要对数据的全生命周期进行管理,包括数据的定义、接入、存储、处理、分析、应用的全过程。一个强大的数据湖实现,需要能做到对其间的任意一条数据的接入、存储、处理、消费过程是可追溯的,能够清楚的重现数据完整的产生过程和流动过程。

计算方面

计算引擎

        从批处理、流式计算、交互式分析到机器学习,各类计算引擎都属于数据湖应该包括的范畴。

        一般情况下,数据的加载、转换、处理会使用批处理计算引擎;需要实时计算的部分,会使用流式计算引擎;对于一些探索式的分析场景,可能又需要引入交互式分析引擎。

        随着大数据技术与人工智能技术的结合越来越紧密,各类机器学习/深度学习算法也被不断引入,例如TensorFlow/PyTorch框架已经支持从HDFS/S3/OSS上读取样本数据进行训练。

存储引擎

        在实际的使用过程中,数据湖中的数据通常并不会被高频次的访问,而且相关的应用也多在进行探索式的数据应用,为了达到可接受的性价比,数据湖建设通常会选择相对便宜的存储引擎(如S3/OSS/HDFS/OBS),并且在需要时与外置存储引擎协同工作,满足多样化的应用需求。


数据湖基本架构

见到过这么一段有意思的问答:

Q:数据湖为什么叫数据湖而不叫数据河或者数据海?

A:        “河”强调的是流动性,河终究是要流入大海的,而企业级数据是需要长期沉淀的,因此叫“湖”比叫“河”要贴切;同时,湖水天然是分层的,满足不同的生态系统要求,这与企业需求是一致的,“热”数据在上层,方便应用随时使用;温数据、冷数据位于数据中心不同的存储介质中,达到数据存储容量与成本的平衡。

        不叫“海”的原因在于,海是无边无界的,而“湖”是有边界的,这个边界就是企业/组织的业务边界;因此数据湖需要更多的数据管理和权限管理能力。

        叫“湖”的另一个重要原因是数据湖是需要精细治理的,一个缺乏管控、缺乏治理的数据湖最终会退化为“数据沼泽”,从而使应用无法有效访问数据,使存于其中的数据失去价值。

        在企业/组织内部,数据是一类重要资产已经成为了共识;为了更好的利用数据,企业/组织需要对数据资产进行长期的原样存储有效管理与集中治理面向业务,提供统一的数据视图、数据模型与数据处理结果

        对于一个典型的数据湖而言,它与大数据平台相同的地方在于它也具备处理超大规模数据所需的存储和计算能力,能提供多模式的数据处理能力;增强点在于数据湖提供了更为完善的数据管理能力

数据湖架构图

下图给出了一个数据湖系统的参考架构

大多数数据湖实践中推荐采用S3/OSS/OBS/HDFS等分布式系统作为数据湖的统一存储。

数据湖建设的基本过程

         数据湖是比传统大数据平台更为完善的大数据处理基础支撑设施,完善在数据湖是更贴近客户业务的技术存在。所有数据湖所包括的、且超出大数据平台存在的特性,例如元数据、数据资产目录、权限管理、数据生命周期管理、数据集成和数据开发、数据治理和质量管理等,都是为了更好的贴近业务,更好的方便客户使用。

数仓建设过程

数据摸底

        在构建数据湖初始工作就是对内部的数据做一个全面的摸底和调研,包括数据来源、数据类型、数据形态、数据模式、数据总量、数据增量等。在这个阶段一个隐含的重要工作是借助数据摸底工作,进一步梳理企业的组织结构,明确数据和组织结构之间关系。为后续明确数据湖的用户角色、权限设计、服务方式奠定基础。

模型抽象

        针对企业/组织的业务特点梳理归类各类数据,对数据进行领域划分,形成数据管理的元数据,同时基于元数据,构建通用的数据模型。

数据接入

        根据第一步的摸排结果,确定要接入的数据源。根据数据源,确定所必须的数据接入技术能力,完成数据接入技术选型,接入的数据至少包括:数据源元数据、原始数据元数据、原始数据。各类数据按照第二步形成的结果,分类存放。

融合治理

        简单来说就是利用数据湖提供的各类计算引擎对数据进行加工处理,形成各类中间数据/结果数据,并妥善管理保存。数据湖应该具备完善的数据开发、任务管理、任务调度的能力,详细记录数据的处理过程。在治理的过程中,会需要更多的数据模型和指标模型。

业务支撑

        在通用模型基础上,各个业务部门定制自己的细化数据模型、数据使用流程、数据访问服务

        很多情况下,业务是在试错、在探索,根本不清楚未来的方向在哪里,也就根本不可能提炼出通用的数据模型;没有数据模型,后面的一切操作也就无从谈起,这也是很多高速成长的企业觉得数据仓库/数据中台无法落地、无法满足需求的重要原因之一。

数据湖建设过程

数据摸底

        依然需要摸清楚数据的基本情况,包括数据来源、数据类型、数据形态、数据模式、数据总量、数据增量。但是,也就需要做这么多了。数据湖是对原始数据做全量保存,因此无需事先进行深层次的设计。

技术选型

        根据数据摸底的情况,确定数据湖建设的技术选型。事实上,这一步也非常的简单,因为关于数据湖的技术选型,业界有很多的通行的做法,基本原则:“计算与存储分离”、“弹性”、“独立扩展”。存储选型是分布式对象存储系统(如S3/OSS/OBS);计算引擎上建议重点考虑批处理需求和SQL处理能力,因为在实践中,这两类能力是数据处理的关键,关于流计算引擎后面会再讨论一下。无论是计算还是存储,建议优先考虑serverless的形式。

数据接入

        确定要接入的数据源,完成数据的全量抽取与增量接入。

融合治理

        从数据应用入手,在应用中明确需求,在数据ETL的过程中,逐步形成业务可使用的数据;同时形成数据模型、指标体系和对应的质量标准。数据湖强调对原始数据的存储,强调对数据的探索式分析与应用,但这绝对不是说数据湖不需要数据模型;恰恰相反,对业务的理解与抽象,将极大的推动数据湖的发展与应用,数据湖技术使得数据的处理与建模,保留了极大的敏捷性,能快速适应业务的发展与变化。

       数据湖采用了一种更为“敏捷”的构建方式。

小结

        数据湖作为新一代大数据分析处理的基础设施,需要超越传统的大数据平台。而数据湖未来可能的发展重点有可能是:

  • 云原生,存储和计算分离、多模态计算引擎支持等;

  • 数据管理能力,数据源管理、数据类目管理、处理流程编排、任务调度、数据溯源、数据治理、质量管理、权限管理等;

  • 完善的数据集成与数据开发能力,一个完备的、可视化的、可扩展的集成开发环境;

  • 与业务的深度融合与集成,未来会有越来越多的行业数据湖解决方案涌现出来,与数据科学家和数据分析师形成良性发展与互动。

——————

欢迎点赞收藏评论区交流

转载请标明出处 谢谢~

相关文章:

漫谈大数据 - 数据湖认知篇

导语:数据湖是目前比较热的一个概念,许多企业都在构建或者准备构建自己的数据湖。但是在计划构建数据湖之前,搞清楚什么是数据湖,明确一个数据湖项目的基本组成,进而设计数据湖的基本架构,对于数据湖的构建…...

阿里云国际版ACE与国内版ACE区别

1.国际版ACE与国内版ACE有哪些不同 2.国际版ACP/ACE约考流程 2.1 登录VUE官方网站约考 https://www.pearsonvue.com.cn/Clients/Alibaba-Cloud-Certification.aspx ​ 2.2 如果之前有注册过账户,那就直接登录,如果还没有账户,那就创建账户 2.…...

Mysql8.0 gis支持

GIS数据类型 MySQL的GIS功能遵守OGC的OpenGIS Geometry Model,支持其定义的空间数据类型的一个子集,包括以下空间数据类型: GEOMETRY:不可实例化的数据类型,但是可以作为一个列的类型,存储任何一种其他类型的数据POIN…...

汇编---Nasm

文章目录 比较流行的汇编语言有3种:不同风格的汇编语言在语法格式上会有不同: 实战代码:Intrinsic函数手写汇编(8086汇编)调用C的API库函数调用约定实际代码 C调用汇编函数进行计算纯C实现如下:CASM实现:纯ASM实现:ASM打印命令行参…...

NDK OpenGL渲染画面效果

NDK系列之OpenGL渲染画面效果技术实战,本节主要是通过OpenGL Java库(谷歌对OpenGL C库做了JIN封装,核心实现还是在Native层),实现页面渲染,自定义渲染特效。 实现效果: 实现逻辑: 1…...

常见的深度学习框架

框架优点缺点TensorFlow- 由Google开发和维护,社区庞大,学习资源丰富- 具备优秀的性能表现,支持大规模分布式计算- 支持多种编程语言接口,易于使用- 提供了可视化工具TensorBoard,可用于调试和可视化模型- 底层架构复杂…...

【设计模式】七大设计原则--------单一职责原则

文章目录 1.案例1.1 原始案例1.2 改进一:类上遵循单一职责原则1.3 改进二:方法上遵循单一职责原则 2.小结 1.案例 1.1 原始案例 package com.sdnu.principle.singleresponsibility; //客户端 public class singleResponsibility {public static void m…...

MySQL-中间件mycat(一)

目录 🍁mycat基础概念 🍁Mycat安装部署 🍃初始环境 🍃测试环境 🍃下载安装 🍃修改配置文件 🍃启动mycat 🍃测试连接 🦐博客主页:大虾好吃吗的博客 &#x1f9…...

ARM寄存器组织

ARM有37个32位长的寄存器: 1个用做PC(Program Counter); 1个用做CPSR(Current Program Status Register); 5个用做SPSR(Saved Program Status Registers); 30个通用寄存器。 AR…...

记录一次webdav协议磁盘挂载经验总结

记录一次磁盘挂载经验总结 文章目录 记录一次磁盘挂载经验总结适配环境服务器协议适配方案脚本与详细说明 适配环境 windows 11windows 10windows 7 x86 and x64linuxuos统信国产化linux系统 服务器协议 webdav 适配方案 一、通用 winfsprclone 已验证通过,版…...

安装Django

1. 在物理环境安装Django Python官方的PyPi仓库为我们提供了一个统一的代码托管仓库,所有的第三方库,甚至你自己写的开源模块,都可以发布到这里,让全世界的人分享下载 pip是最有名的Python包管理工具 。提供了对Python包的查找、…...

【前端面经】JS-如何使用 JavaScript 来判断用户设备类型?

在 Web 开发中,有时需要针对不同的设备类型进行不同的处理。例如,对于移动设备,我们可能需要采用不同的布局或者交互方式,以提供更好的用户体验。因此,如何判断用户设备类型成为了一个重要的问题。 1. 使用 navigator…...

压缩HTML引用字体

内容简介 有些网站为了凸显某部分字体,而引入自定义字体,但由于自定义字体相对都比较大(几M),导致页面加载缓慢;所以本文介绍三种压缩字体的方法,可根据项目情况自行选择。 压缩方法 1、利用Fontmin程序&a…...

大厂高频面试:底层的源码逻辑知多少?

你好,我是何辉。今天我们来聊一聊Dubbo的大厂高频面试题。 大厂面试,一般重点考察对技术理解的深度,和中小厂的区别在于,不仅要你精于实战,还要你深懂原理,勤于思考并针对功能进行合理的设计。 网上一直流…...

【学习笔记】CF607E Cross Sum

最后一道数据结构,不能再多了。 而且需要一点计算几何的知识,有点难搞。 分为两个部分求解。 首先考虑找到距离 ≤ r \le r ≤r的交点数量。发现这等价于圆上两段圆弧相交,因此将圆上的点离散化后排序,用一个主席树来求就做完了…...

Python 一元线性回归模型预测实验完整版

一元线性回归预测模型 实验目的 通过一元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理 实验内容 一元线性回归预测模型 实验步骤和过程 (1)第一步:学习一元线性回归预测模型相关知识。 线性回归模型属于…...

GStreamer第一阶段的简单总结

这里写目录标题 前言个人的总结v4l2src插件的简单使用 前言 因为涉及很多细节的GStreamer官方论坛有详细解链接: GStreamer官网,这里不做说明,以下只是涉及到个人的理解和认知,方便后续的查阅。 个人的总结 1)了解pipeline的使用&#xff0…...

【网络进阶】服务器模型Reactor与Proactor

文章目录 1. Reactor模型2. Proactor模型3. 同步IO模拟Proactor模型 在高并发编程和网络连接的消息处理中,通常可分为两个阶段:等待消息就绪和消息处理。当使用默认的阻塞套接字时(例如每个线程专门处理一个连接),这两…...

使用div替代<frameset><frame>的问题以及解决办法

首先是原版三层框架的html&#xff1a; <html> <head> <title>THPWP</title> </head> <!-- 切记frameset不能写在body里面&#xff0c;以下代表首页由三层模块组成&#xff0c;其中第一层我是用来放菜单高度占比14%&#xff0c;中间的用作主…...

Verilog中的`define与`if的使用

一部分代码可能有时候用&#xff0c;有时候不用&#xff0c;为了避免全部编译占用资源&#xff0c;可以使用条件编译语句。 语法 // Style #1: Only single ifdef ifdef <FLAG>// Statements endif// Style #2: ifdef with else part ifdef <FLAG>// Statements …...

沃尔玛、亚马逊影响listing的转化率4大因素,测评补单自养号解析

1、listing的相关性&#xff1a;前期我们在找词&#xff0c;收集词的时候&#xff0c;我们通过插件来协助我们去筛选词。我们把流量高&#xff0c;中&#xff0c;低的关键词都一一收集&#xff0c;然后我们再进行对收集得来的关键词进行分析&#xff0c;再进行挑词&#xff0c;…...

静态分析和动态分析

在开发早期&#xff0c;发现并修复bug在许多方面都有好处。它可以减少开发时间&#xff0c;降低成本&#xff0c;并且防止数据泄露或其他安全漏洞。特别是对于DevOps&#xff0c;尽早持续地将测试纳入SDLC软件开发生命周期是非常有帮助的。 这就是动态和静态分析测试的用武之地…...

代码随想录_贪心_leetcode 1005 134

leetcode 1005. K 次取反后最大化的数组和 1005. K 次取反后最大化的数组和 给你一个整数数组 nums 和一个整数 k &#xff0c;按以下方法修改该数组&#xff1a; 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以…...

笔记:对多维torch进行任意维度的多“行”操作

如何取出多维torch指定维度的指定“行” 从二维torch开始新建torch取出某一行取出某一列一次性取出多行取出连续的多行取出不连续的多行 一次取出多列取出连续的多列取出不连续的多列 考虑三维torch取出三维torch的任意两行&#xff08;means 在dim0上操作&#xff09;取出连续…...

【VSCode】1、VSCode 如何连接服务器

文章目录 一、安装 remote-ssh 插件二、直接连接三、配置 SSH 公匙&#xff0c;免密登录 一、安装 remote-ssh 插件 点击插件搜索框&#xff0c;搜 remote-ssh&#xff0c;点击安装 安装完成后就会出现下面的图标&#xff1a; 二、直接连接 点击加号&#xff0c;输入 ssh 连接…...

AI工具:通过智能实现工作和学习效率的革命化

AI工具是指一系列人工智能技术和工具&#xff0c;包括机器学习、深度学习、自然语言处理、计算机视觉等。这些工具可以帮助开发人员和数据科学家通过处理和分析海量数据来自动识别和解决问题&#xff0c;提供智能的决策和预测模型。常见的AI工具包括TensorFlow、PyTorch、Keras…...

static 和构造方法

文章目录 static构造方法内存中数据的存储方式示例 static 具体对象的属性&#xff0c;称之为对象属性&#xff0c;成员属性&#xff0c;实例属性。 具体对象的方法&#xff0c;称之为对象方法&#xff0c;成员方法&#xff0c;实例方法。 静态&#xff1a;static 和具体对…...

【Linux 裸机篇(八)】I.MX6U EPIT 定时器中断、定时器按键消抖

目录 一、EPIT 定时器简介二、定时器按键消抖 一、EPIT 定时器简介 EPIT 的全称是&#xff1a; Enhanced Periodic Interrupt Timer&#xff0c;直译过来就是增强的周期中断定时器&#xff0c;它主要是完成周期性中断定时的。学过 STM32 的话应该知道&#xff0c; STM32 里面的…...

Web安全 XSS靶场搭建(玩转整个XSS环境.)

Web安全 XSS靶场搭建 XSS又叫CSS&#xff08;Cross Site Script&#xff09;跨站脚本攻击&#xff0c;指的是攻击者在Web页面&#xff0c;插入恶意JS代码&#xff0c;当用户浏览该页之时&#xff0c;嵌入其中JS代码就会被执行&#xff0c;从而达到攻击的目的.&#xff08;包含…...

前端开发技术——DOM(上)

一.单选题&#xff08;共4题,44.4分&#xff09; 1 下列选项中&#xff0c;关于事件的描述错误的是&#xff08;&#xff09; A、 事件指的是可以被JavaScript侦测到的行为 B、 事件驱动程序指的是事件触发后要执行的代码 C、 事件源是指触发的事件 D、 事件的种类称为事件…...