当前位置: 首页 > news >正文

怎样清理网站后门/百度搜索优化软件

怎样清理网站后门,百度搜索优化软件,古楼角网站建设,网站建设项目管理论文微软和谷歌正急于使用大型语言模型技术来强化搜索引擎。但有充分的理由认为,相比于提供事实性信息,这项技术更适合作为人们情感上的伴侣。 美媒评论称,目前基于大型语言模型的人工智能工具,例如ChatGPT,更擅长共情而不…

微软和谷歌正急于使用大型语言模型技术来强化搜索引擎。但有充分的理由认为,相比于提供事实性信息,这项技术更适合作为人们情感上的伴侣。
在这里插入图片描述
美媒评论称,目前基于大型语言模型的人工智能工具,例如ChatGPT,更擅长共情而不是提供准确的事实信息。这是因为设计者优先考虑流畅性而非准确性。加之训练数据库中包含大量情感信息,将大型语言模型植入搜索引擎的竞争毫无意义。

以下是翻译内容

今年早些时候,普林斯顿大学计算机科学教授阿尔温德·纳拉亚南(Arvind Narayanan)为自己四岁的女儿开发了支持ChatGPT的语音界面。这不仅是一个实验,更是因为纳拉亚南相信,人工智能机器人有一天会成为女儿生活中的重要组成部分。

纳拉亚南的女儿天生好奇,经常问他有关动物、植物和人体的问题。他认为OpenAI开发的ChatGPT可以提供有用的答案。令他惊讶的是,一旦他告诉系统正在与小孩对话,这款聊天机器人就能表现出无可挑剔的共情能力。

纳拉亚南的女儿问:“灯灭了会怎么样?”

“灯灭了,天就黑了,可能会有点吓人,”ChatGPT用人工合成的声音回答道。“但别担心!”“你可以做很多事情来让自己在黑暗中感到安全舒适。”

ChatGPT随后提出了一些使用夜灯的建议,并最后提醒:“在黑暗中感到有点害怕很正常。”这个解释显然让纳拉亚南的女儿感到很安心。
在这里插入图片描述
微软和谷歌正急于使用大型语言模型技术来强化搜索引擎。但有充分的理由认为,相比于提供事实性信息,这项技术更适合作为人们情感上的伴侣。

听起来可能很奇怪。但无论是谷歌的Bard还是微软的新Bing,这种人工智能在用于搜索信息时都出现了一系列尴尬的事实性错误。Bard在首次公开演示时就给出了关于詹姆斯·韦伯太空望远镜的错误信息,而新Bing也搞错了一大堆财务报表数据。

当人工智能聊天机器人用于搜索时,出现事实性错误的代价很高。Replika是一款人工智能应用程序,下载量已经超过500万次。该应用程序的创始人尤金尼亚·库伊达(Eugenia Kuyda)表示,当人工智能被设计成伴侣时,出现错误的代价就要低得多。她说:“这不会影响用户体验,不像搜索,小小错误就会破坏用户对产品的信任。”

谷歌前人工智能研究员玛格丽特·米切尔(Margaret Mitchell)曾与人合作撰写过一篇关于大型语言模型风险的论文。她表示,大型语言模型根本“不适合”作为搜索引擎。这些大型语言模型之所以会出错,是因为训练所用的数据经常包含错误信息,而且模型也没有基本事实来验证所生成的内容。此外,大型语言模型的设计者可能优先考虑生成内容的流畅性,而不是准确性。

这也是这些工具特别擅长迎合用户的原因之一。毕竟,目前大型语言模型都是从网上抓取文本进行训练,其中包括推特和Facebook等社交媒体平台上发布的情绪性内容,以及Reddit和Quora等论坛上的个人心理疏导内容。电影电视剧中的台词、小说中的对话,以及关于情商的研究论文都进入了训练数据库,这使得这些工具更具有同理心。

据报道,一些人把ChatGPT当成机器人治疗师来使用。其中一位说,他们这样做是为了避免成为别人的负担。

为了测试人工智能的共情能力,人们对ChatGPT进行了一次在线情商测试。结果显示,它表现出色,在社会意识、关系管理和自我管理方面都获得了满分,在自我意识方面只是略有差池。

从某种程度上来说,ChatGPT在测试中的表现比一些人还要好

虽然一台机器能为人们带来共情感受有点不真实,但确实有一定道理。人们天生需要社会联系,人类大脑也有能力反映他人感受,这意味着即使对方没有真正“感受”到我们的想法,我们也能获得一种理解感。人类大脑中的镜像神经元会在我们感受到他人的共情时被激活,给我们带来一种彼此相连的感觉。

当然,共情是一个涉及多方面的概念,要想真正体验到这种感觉,人们还是需要与真正的人进行交流。
在这里插入图片描述
伦敦国王学院临床心理学家托马斯·沃德(Thomas Ward)研究了软件在心理治疗中的作用,他警告人们不要想当然地认为,特别是在心理问题很严重的情况下,人工智能可以充分满足人们在心理健康方面的需求。例如,聊天机器人可能无法理解人的情感复杂性。换句话说,ChatGPT很少说“我不知道”,因为它在设计上倾向于自信而不是谨慎回答问题。

人们也不应该把聊天机器人作为发泄情感的习惯性渠道。沃德说:“在将人工智能聊天机器人视为消除孤独方式的世界里,微妙的人际关系,例如拉住手或明白何时说话何时倾听,可能会消失。”

这可能会最终导致更多问题。但就目前而言,人工智能在情感方面的技能至少要比它们掌握的事实更可靠。

相关文章:

ChatGPT情商很高,但并不适合当搜索引擎

微软和谷歌正急于使用大型语言模型技术来强化搜索引擎。但有充分的理由认为,相比于提供事实性信息,这项技术更适合作为人们情感上的伴侣。 美媒评论称,目前基于大型语言模型的人工智能工具,例如ChatGPT,更擅长共情而不…...

Mac 地址与 IP 地址有什么区别?

Mac 地址和 IP 地址是两个不同的概念,它们分别代表了计算机网络中的不同层次和地址。Mac 地址是物理地址,是在计算机硬件中存储的地址,通常是以特定的六进制格式表示。每个设备都有一个唯一的 MAC 地址,它可以用来在计算机之间进行…...

bootloaders

什么是BootLoader? 一般来说,bootloader是一种软件/固件,它在SoC上电后立即运行。bootloader的主要职责是启动软件的后续部分,例如操作系统、baremetal应用程序或在某些情况下另一个bootloader。当涉及到嵌入式时,bootloader通常…...

PC或服务器装双系统

1. 准备工作 1.1U盘启动盘的制作 ①准备一个 4G 以上的 U 盘,备份好U盘资料,后面会对 U 盘进行格式化。 ②去CentOS官网下载你想要安装的 ISO 格式镜像文件,现在通常是CentOS6、7或者8。如果你英文不太好,可以选择使用edge浏览…...

嵌入式代码查看分析利器---Understand

平时在开发嵌入式程序的时候大多数使用的都是keil软件,一般小的工程使用keil没感觉到有什么问题,但是当工程比较大的时候,比如移植了FreeRTOS系统或者LWIP网络系统时,代码全部编译一次就要花费很长世间,特别是开启了点…...

人群计数经典方法Density Map Estimation,密度图估计

(3)Density Map Estimation(主流) 这是crowd counting的主流方法 传统方法不好在哪里?object detection-based method和regression-based method无法从图像中提取更抽象的有助于完成人群计数任务的语义特征 概况&…...

【华为】Smart-Link基础知识

Smark-Link技术 Smark-Link(灵活链路or备份链路,华为/华三 私有用) Smark-Link定义 Smark-Link,又叫备份链路。一个Smark Link由两个接口组组成,其中一个接口作为另一个的备份。Smark-Link常用于双上行组网,提供可靠高效的备份与…...

分享24个强大的HTML属性 —— 建议每位前端工程师都应该掌握

前期回顾 是不是在为 API 烦恼 ?好用免费的api接口大全呼之欲出_0.活在风浪里的博客-CSDN博客APi、常用框架、UI、文档—— 整理合并https://blog.csdn.net/m0_57904695/article/details/130459417?spm1001.2014.3001.5501 👍 本文专栏:…...

NIO基础 - 网络编程

non-blocking io 非阻塞 IO 1. 三大组件 1.1 Channel & Buffer channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入…...

06.toRef 和 toRefs

学习要点: 1.toRef 和 toRefs 本节课我们来要了解一下 Vue3.x 中的 ref 两个周边 API 的用法; 一.toRef 和 toRefs 1. toRef 可以将源响应式对象上的 property 创建一个 ref 对象; const obj reactive({ name : Mr.Lee, age : 10…...

RabbitMq、Kafka、RocketMq整理

MQ的主要作用:异步提高性能、解耦提高扩展性、削峰。 一、常见中间件对比 Kafka、RocketMq和RabbitMq最大的区别就是:前两个是分布式存储。 1.1、ActiveMq 优点:1)完全支持jms规范的消息中间件 ,2)提供丰富的api, 3)多种集群构建模式。 缺点:)在高并发的场景下,性能可…...

Python多元线性回归预测模型实验完整版

多元线性回归预测模型 实验目的 通过多元线性回归预测模型,掌握预测模型的建立和应用方法,了解线性回归模型的基本原理 实验内容 多元线性回归预测模型 实验步骤和过程 (1)第一步:学习多元线性回归预测模型相关知识。 一元线性回归模型…...

C#基础 变量在内存中的存储空间

变量存储空间(内存中) // 1byte 8bit // 1KB 1024byte // 1MB 1024KB // 1GB 1024MB // 1TB 1024GB // 通过sizeof方法 可以获取变量类型所占的内存空间(单位:字节) 有…...

你最关心的4个零代码问题,ChatGPT 帮你解答了!

作为人工智能(AI)新型聊天机器人模型 ChatGPT,刚上线5天就突破100万用户,两个多月全球用户量破亿,不愧为业界最炙热的当红炸子鸡。 ChatGPT 是一种语言生成模型,由 OpenAI 开发和训练。它是基于 Transform…...

linux的环境变量

目录 一、自定义变量和环境变量的区别 二、自定义变量 三、环境变量 四、查看所有变量(自定义变量、环境变量) 五、记录环境变量到相关的系统文件 (1)为什么要这样做? (2)环境变量相关系统…...

openQA----基于openSUSE部署openQA

【原文链接】openQA----基于openSUSE部署openQA (1)下载 openqa-bootstrap 脚本并执行 cd /opt/ curl -s https://raw.githubusercontent.com/os-autoinst/openQA/master/script/openqa-bootstrap | bash -x(2)配置apache proxy…...

正则表达式基础一

BRE(basic regular expression):匹配数据流中的文本字符 普通文本匹配 特殊字符 正则表达式存在一些特殊字符,如需当成普通文本来匹配,必须加上转义,即反斜杠\,如下所示 .*[]^${}?|() 指定出现位置的字符 ^ 指定行首…...

Java中的内存泄露、内存溢出与栈溢出

内存泄露、内存溢出与栈溢出 1、概述2、内存泄漏、内存溢出和栈溢出2.1、内存泄漏2.2、内存溢出2.3、栈溢出 2、总结 1、概述 大家好,我是欧阳方超。本次就Java中几个相似而又不同的概念做一下介绍。内存泄漏、内存溢出和栈溢出都是与内存相关的问题,但…...

时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比)

时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比) 目录 时序预测 | Matlab实现SSA-GRU、GRU麻雀算法优化门控循环单元时间序列预测(含优化前后对比)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现SSA-GRU、GRU麻雀算法…...

Java+springboot开发的医院HIS信息管理系统实现,系统部署于云端,支持多租户SaaS模式

一、项目技术框架 前端:AngularNginx 后台:JavaSpring,SpringBoot,SpringMVC,SpringSecurity,MyBatisPlus,等 数据库:MySQL MyCat 缓存:RedisJ2Cache 消息队列&…...

【前端面经】Vue-Vue中的 $nextTick 有什么作用?

Vue.js 是一个流行的 JavaScript 框架,它提供了许多实用的功能,其中之一就是 $nextTick 方法。 在 Vue.js 中, $nextTick 方法可以确保我们在更新 DOM 之后再去执行某些操作,从而避免由于 DOM 更新而导致的问题。这个方法非常实用…...

基于STATCOM的风力发电机稳定性问题仿真分析(Simulink)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

如何写出高质量的代码

背景说明: 你是否曾经为自己写的代码而感到懊恼?你是否想过如何才能写出高质量代码?那就不要错过这个话题!在这里,我们可以讨论什么是高质量代码,如何写出高质量代码等问题。无论你是初学者还是资深开发人…...

15.基于主从博弈的智能小区代理商定价策略及电动汽车充电管理

说明书 MATLAB代码:基于主从博弈的智能小区代理商定价策略及电动汽车充电管理 关键词:电动汽车 主从博弈 动态定价 智能小区 充放电优化 参考文档:《基于主从博弈的智能小区代理商定价策略及电动汽车充电管理》基本复现 仿真平台&#…...

ChatGPT实现多语种翻译

语言翻译 多语种翻译是 NLP 领域的经典话题,也是过去很多 AI 研究的热门领域。一般来说,我们认为主流语种的互译一定程度上属于传统 AI 已经能较好完成的任务。比如谷歌翻译所采用的的神经机器翻译(NMT, Neural Machine Translation)技术就一度让世人惊…...

volatile关键字原理的使用介绍和底层原理解析和使用实例

文章目录 volatile关键字原理的使用介绍和底层原理解析和使用实例1. volatile 关键字的作用2. volatile 的底层原理3. volatile 的使用案例4. volatile 的原子性问题5. 如何解决 volatile 的原子性问题6. volatile 的实现原理7. 小结8. volatile的最佳实践9. 案例:使用volatile…...

【软件下载】换新电脑记录下下载的软件时所需地址

1.idea https://www.jetbrains.com/zh-cn/idea/download/other.html 2.oracle官方(下载jdk时找的) https://www.oracle.com/ 3.jdk8 https://www.oracle.com/java/technologies/downloads/ 下拉找到jdk8 切换windows (需要注册个oracle账…...

【10.HTML入门知识-CSS元素定位】

1 标准流(Normal Flow) 默认情况下,元素都是按照normal flow(标准流、常规流、正常流、文档流【document flow】)进行排布  从左到右、从上到下按顺序摆放好  默认情况下,互相之间不存在层叠现象 1.1…...

LeetCode_贪心算法_简单_455.分发饼干

目录 1.题目2.思路3.代码实现(Java) 1.题目 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的…...

HashMap

目录 HashMap是什么? 为什么要使用HashMap? HashMap存储元素原理(put⽅法) 扰动函数 前置知识 异或运算 &运算 为什么使用扰动函数 实验验证扰动函数 常见问题 HashMap的默认长度是多少? HashMap是先扩…...