当前位置: 首页 > news >正文

不得不说的行为型模式-责任链模式

目录

责任链模式: 

 

底层原理:

代码案例:

下面是面试中可能遇到的问题:


责任链模式: 

责任链模式是一种行为型设计模式,它允许多个对象在一个请求序列中依次处理该请求,直到其中一个对象能够处理它为止。这些对象被组织成一条链,并且每个对象都有一个指向下一个对象的引用。

 

底层原理:

  • 客户端将请求发送到责任链中的第一个对象。
  • 如果该对象能够处理请求,则处理请求并返回结果。
  • 如果该对象不能处理请求,则将请求传递给下一个对象。
  • 重复此过程,直到找到能够处理请求的对象或责任链末尾。

代码案例:

下面是一个简单的 C++ 代码案例,以说明责任链模式的实现方式。假设我们正在处理一个简单的文本编辑器,需要实现一系列文本处理器来处理不同的文本格式。我们可以使用责任链模式来处理这些请求,以便让每个处理器能够处理它们自己能够处理的请求。

在上面的代码中,我们定义了一个 TextProcessor 接口,其中包含了一个 process 方法,它接受一个字符串作为输入,并将其处理。然后,我们定义了三个具体的文本处理器:PlainTextProcessorHtmlTextProcessorMarkdownProcessor。这些处理器都实现了 TextProcessor 接口,并且能够处理不同类型的文本格式。

HtmlTextProcessorMarkdownProcessor 都有一个指向下一个处理器的指针,这样它们就可以将请求传递给下一个处理器。在每个处理器的 process 方法中,它会检查输入的文本是否符合该处理器所能处理的格式。如果是,它就处理该文本;否则,它就将该文本传递给下一个处理器,直到找到能够处理该文本的处理器为止。

main 函数中,我们定义了一个责任链,将 PlainTextProcessorHtmlTextProcessorMarkdownProcessor 链接在一起。然后,我们向该链中的第一个处理器发送三个不同的文本请求。第一个请求是普通文本,第二个请求是 HTML 格式的文本,第三个请求是 Markdown 格式的文本。我们可以看到,在每个请求中,只有能够处理该请求的处理器才会处理该请求,而其他处理器则将其传递给下一个处理器。

该代码的输出如下所示:

PlainTextProcessor: This is some plain text.
HtmlTextProcessor: <html><body><h1>This is an HTML document.</h1></body></html>
MarkdownProcessor: This is some **markdown** text.

可以看到,在第一个请求中,只有 PlainTextProcessor 能够处理该请求,因此它处理了该请求。在第二个请求中,只有 HtmlTextProcessor 能够处理该请求,因此它处理了该请求。在第三个请求中,只有 MarkdownProcessor 能够处理该请求,因此它处理了该请求。

这个例子展示了责任链模式的基本实现方式。责任链模式可以帮助我们实现解耦和灵活性,因为它允许我们在运行时动态地组合和分离对象。

下面是面试中可能遇到的问题:

  1. 什么是责任链模式?它有什么作用?

  2. 在责任链模式中,处理器之间的连接是怎样的?怎样才能保证处理器按照正确的顺序被调用?

  3. 责任链模式中的处理器都有哪些角色?它们是如何协同工作的?

  4. 责任链模式有哪些优点和缺点?你能够举例说明吗?

可以先自己思考一下,看参考答案是不是和你想的一样哦=v=~

可能的答案如下:

缺点:

  1. 责任链模式是一种行为型模式,它允许我们将多个处理器链接在一起,形成一个处理器链。当一个请求从链的一端进入时,处理器链会依次尝试处理该请求,直到找到能够处理该请求的处理器为止。责任链模式的作用是解耦请求发送者和接收者之间的关系,使系统更加灵活。

  2. 在责任链模式中,处理器之间的连接是一条链式结构。每个处理器都有一个指向下一个处理器的指针。为了保证处理器按照正确的顺序被调用,需要将处理器按照一定的顺序链接在一起。一般来说,这个顺序应该是从最具体的处理器开始,依次向上层抽象处理器链接。当请求进入责任链时,它会从链的第一个处理器开始,依次向下传递,直到找到能够处理该请求的处理器为止。

  3. 在责任链模式中,处理器一般分为两种角色:具体处理器和抽象处理器。具体处理器是责任链中最底层的处理器,它们负责处理请求,并决定是否将请求传递给下一个处理器。抽象处理器是一个接口或抽象类,它定义了处理器的共同接口,并保存了下一个处理器的指针。在链中的任何一个处理器都可以通过它的接口来发送请求,并将请求传递给下一个处理器。

  4. 责任链模式的优点包括:可以动态地组合和分离对象;可以使系统更加灵活;可以避免将请求发送者和接收者之间的关系硬编码在一起。其缺点包括:由于每个请求都要在责任链中传递,因此可能会对性能产生一定的影响;在处理器链过长或者没有正确设置链中处理器的顺序时,可能会导致请求不能被正确处理。例如,一个简单的应用场景是文本处理,不同的文本处理器可以根据文本

    的类型和需求被组合成一个处理器链,实现文本处理的功能。

    一个可能的C++代码案例如下:

    #include <iostream>
    #include <string>// 抽象处理器
    class Handler {
    public:Handler(Handler* successor) : successor_(successor) {}virtual ~Handler() {}// 处理请求的虚函数virtual void handleRequest(const std::string& request) {if (successor_) {successor_->handleRequest(request);}}protected:Handler* successor_;
    };// 具体处理器 A
    class ConcreteHandlerA : public Handler {
    public:ConcreteHandlerA(Handler* successor) : Handler(successor) {}virtual void handleRequest(const std::string& request) override {if (request == "A") {std::cout << "ConcreteHandlerA handles the request." << std::endl;}else {Handler::handleRequest(request);}}
    };// 具体处理器 B
    class ConcreteHandlerB : public Handler {
    public:ConcreteHandlerB(Handler* successor) : Handler(successor) {}virtual void handleRequest(const std::string& request) override {if (request == "B") {std::cout << "ConcreteHandlerB handles the request." << std::endl;}else {Handler::handleRequest(request);}}
    };// 具体处理器 C
    class ConcreteHandlerC : public Handler {
    public:ConcreteHandlerC(Handler* successor) : Handler(successor) {}virtual void handleRequest(const std::string& request) override {if (request == "C") {std::cout << "ConcreteHandlerC handles the request." << std::endl;}else {Handler::handleRequest(request);}}
    };// 客户端代码
    int main() {ConcreteHandlerA handlerA(nullptr);ConcreteHandlerB handlerB(&handlerA);ConcreteHandlerC handlerC(&handlerB);// 将请求依次发送给责任链的第一个处理器handlerC.handleRequest("A");handlerC.handleRequest("B");handlerC.handleRequest("C");handlerC.handleRequest("D");return 0;
    }
    

    在这个代码案例中,Handler 是抽象处理器,定义了所有处理器都应该有的接口。具体处理器 ConcreteHandlerAConcreteHandlerBConcreteHandlerC 继承了 Handler 接口,并实现了各自的处理逻辑。

    在客户端代码中,首先创建了三个具体处理器,并将它们依次链接在一起,形成一个处理器链。然后将请求依次发送给责任链的第一个处理器,让处理器链依次尝试处理该请求。

    当请求为 A 时,ConcreteHandlerA 可以处理该请求,因此它会输出相应的处理信息。当请求为 B 时,ConcreteHandlerB 可以处理该请求,因此它会输出相应的处理信息。当请求为 C 时,ConcreteHandlerC 可以处理该请求,因此它会输出相应的处理信息。当请求为 D 时,处理器链上的任何一个处理器都不能处理该请求,因此它不会输出任何处理信息

    5责任链模式的优缺点如下:

    优点:

  5. 将请求的发送者和接收者解耦。请求发送者无需知道哪个接收者能够处理该请求,接收者也无需知道请求的发送者是谁,以及该请求是从哪个接收者发出的。

  6. 可以动态的添加或删除处理器,因此责任链模式具有很好的灵活性和可扩展性。

  7. 由于请求可能需要经过多个处理器才能被处理,因此责任链模式的处理过程可能会比较缓慢。

  8. 对于长的责任链,请求可能会遍历整个责任链才能被处理,这可能会带来一些性能问题。

  9. 对于一些请求,如果没有任何一个处理器能够处理该请求,那么该请求就会被“吞掉”,导致该请求无法得到处理。

    • 责任链模式可以使得系统更加符合单一职责原则。每个具体处理器只负责处理与自己相关的请求,从而将复杂的业务逻辑拆分成多个小的处理器,让每个处理器聚焦于自己的领域,更加清晰明了。

相关文章:

不得不说的行为型模式-责任链模式

目录 责任链模式&#xff1a; 底层原理&#xff1a; 代码案例&#xff1a; 下面是面试中可能遇到的问题&#xff1a; 责任链模式&#xff1a; 责任链模式是一种行为型设计模式&#xff0c;它允许多个对象在一个请求序列中依次处理该请求&#xff0c;直到其中一个对象能够…...

基于dsp+fpga+AD+ENDAC的半导体运动台高速数据采集电路仿真设计(四)

整个调试验证与仿真分析分三个步骤&#xff1a;第一步是进行 PCB 检查及电气特性测试&#xff0c;主 要用来验证硬件设计是否正常工作&#xff1b;第二步进行各子模块功能测试&#xff0c;包括高速光纤串行 通信的稳定性与可靠性测试&#xff0c; A/D 及 D/A 转换特性测…...

快速搭建Electron+Vite3+Vue3+TypeScript5脚手架 (无需梯子,快速安装Electron)

一、介绍 &#x1f606; &#x1f601; &#x1f609; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需…...

语义分割学习笔记(二)转置卷积

目录 1.转置卷积Transposed Convolution概念 2.转置卷积操作步骤 3.转置卷积参数 4.实战案例 推荐课程&#xff1a;转置卷积&#xff08;transposed convolution&#xff09;_哔哩哔哩_bilibili 感谢霹雳吧啦Wz&#xff0c;真乃神人也。 1.转置卷积Transposed Convolutio…...

docker运行PostgreSQL数据库维护,执行脚本备份数据库与更新表结构

文章目录 PostgreSQL简介业务场景数据库维护docker-compose配置备份脚本更新表结构脚本 PostgreSQL简介 PostgreSQL是一种开源的关系型数据库管理系统&#xff0c;它是一个功能强大、高度可定制化和支持复杂应用的数据库。它支持广泛的数据类型&#xff0c;包括数值、文字、二…...

【计算机网络】127.0.0.1、0.0.0.0、localhost地址是什么?

目录 0.0.0.0是什么&#xff1f;127.0.0.1是什么&#xff1f;用途 localhost是什么&#xff1f;总结 0.0.0.0是什么&#xff1f; IPV4中&#xff0c;0.0.0.0地址被用于表示一个无效的&#xff0c;未知的或者不可用的目标。 在服务器中&#xff0c;0.0.0.0指的是本机上的所有I…...

分享2款CSS3母亲节主题寄语文字动画特效

目录 ❤️ 前言 第一款&#xff1a;妈妈您辛苦了&#xff01; 一、效果图 二、代码实现 第二款&#xff1a;Mothers Day&#xff01; 一、效果图 二、代码实现 ❤️ 祝福 ❤️ 前言 母亲节&#xff0c;在每年五月的第二个星期日&#xff0c;是用来感谢母亲的节日。…...

【AutoGPT】AutoGPT出现,是否意味着ChatGPT已被淘汰

Yan-英杰的主页 悟已往之不谏 知来者之可追 C程序员&#xff0c;2024届电子信息研究生 目录 前言 什么是ChatGPT&#xff1f; 什么是AutoGPT&#xff1f; AutoGPT与ChatGPT的区别 AutoGPT的优势和劣势 优势 劣势 ChatGPT是否会被淘汰&#xff1f; 前言 近年来&#x…...

( 字符串) 9. 回文数 ——【Leetcode每日一题】

❓9. 回文数 难度&#xff1a;简单 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样的整数。 例如…...

SpringAOP

SpringAOP 一、AOP1. AOP简介1.1 AOP简介和作用1.2 AOP中的核心概念 2. AOP入门案例【重点】2.1 AOP入门案例思路分析2.2 AOP入门案例实现【第一步】导入aop相关坐标【第二步】定义dao接口与实现类【第三步】定义通知类&#xff0c;制作通知方法【第四步】定义切入点表达式、配…...

学系统集成项目管理工程师(中项)系列15_质量管理

1. 质量&#xff08;Quality&#xff09;的定义 1.1. 反应实体满足主体明确和隐含需求的能力的特性总和 1.2. 明确需求是指在标准、规范、图样、技术要求、合同和其他文件中用户明确提出的要求与需要 1.3. 隐含需求是指用户和社会通过市场调研对实体的期望以及公认的、不必明…...

统计学习方法第四章——朴素贝叶斯法

x.1 前言 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。是通过给定training dataset学习联合概率分布的方法&#xff0c;是一种生成方法。 x.2 使用贝叶斯定理做分类 使用贝叶斯定理做分类&#xff0c;相比较于朴素贝叶斯即丢除特征条件独立假设这个条件。 …...

安装配置goaccess实现可视化并实时监控nginx的访问日志

一、业务需求 我们安装了nginx后,需要对nginx的访问情况进行监控(希望能够实时查看到访问nginx的情况),如下图所示: 二、goaccess的安装配置步骤 2.1、准备内容 需要先安装配置nginx或OpenResty - 安装 Linux环境对Nginx开源版源码下载、编译、安装、开机自启https://b…...

springboot第14集:MyBatis-CRUD讲解

注意点&#xff1a;增、删、改操作需要提交事务&#xff01; 为了规范操作&#xff0c;在SQL的配置文件中&#xff0c;我们尽量将Parameter参数和resultType都写上&#xff01; 编写Mapper接口类 import com.da.pojo.User; import java.util.List; public interface UserMapper…...

ES6新特性(1)

目录 一、字符串扩展 &#xff08;1&#xff09;字符串遍历器接口&#xff08;for...of...&#xff09; &#xff08;2&#xff09;模板字符串 二、字符串新增方法 &#xff08;1&#xff09;包含方法 &#xff08;2&#xff09;重复方法 &#xff08;3&#xff09;补全方…...

这就是二分查找?(C语言版)

大家好&#xff01;我又来了&#xff0c;哈哈~今天我要和大家分享一种神奇的算法——二分查找&#xff01;你可能会问&#xff0c;“二分查找有什么好玩的&#xff1f;”但在我看来它就像一场魔法表演&#xff0c;当你输入一个数&#xff0c;他会在一堆数中快速找到它的位置。找…...

操作系统之内存管理

连续分配 一、单一连续 直接为要运行的进程分配一个内存&#xff0c;只适合单任务&#xff0c;只能用于单对象、单任务&#xff0c;内存被分配为系统区和用户区&#xff0c;系统区在低地址&#xff0c;用户区是一个用户独享 二、等分分区 由于分配一个内存只能执行单任务&a…...

【Python | matplotlib】matplotlib.cm的理解以及举例说明

文章目录 一、模块介绍二、颜色举例 一、模块介绍 matplotlib.cm是Matplotlib中的一个模块&#xff0c;它提供了一组用于处理颜色映射&#xff08;colormap&#xff09;的函数和类。颜色映射是一种将数值映射到颜色的方法&#xff0c;常用于制作热力图、等值线图、散点图等。 …...

数据库单实例升级

一、单实例环境,全时长二个半钟多。详细图文说明到这下载 1、停止所有oracle相关进程。 Emctlstop dbconsole Isqlplusctl stop Lsnrctl stop sqlplus /nolog sql>conn /as sysdba Connectedtoanidleinstance. sql>shutdown 然后&#xff0c;冷备份下数据库cp…...

Photoshop如何使用选区之实例演示?

文章目录 0.引言1.利用快速选择工具抠图2.制作网店产品优惠券3.利用选区改变眼睛颜色4.抠取复杂的花束5.制作丁达尔光照效果6.利用选区调整图像局部颜色 0.引言 因科研等多场景需要进行绘图处理&#xff0c;笔者对PS进行了学习&#xff0c;本文通过《Photoshop2021入门教程》及…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...