当前位置: 首页 > news >正文

k8s DCGM GPU采集指标项说明

dcgm-exporter 采集指标项

指标解释
dcgm_fan_speed_percentGPU风扇转速占比(%)
dcgm_sm_clockGPU sm 时钟(MHz)
dcgm_memory_clockGPU 内存时钟(MHz)
dcgm_gpu_tempGPU 运行的温度(℃)
dcgm_power_usageGPU 的功率(w)
dcgm_pcie_tx_throughputGPU PCIeTX 传输的字节总数 (kb)
dcgm_pcie_rx_throughputGPU PCIeRX 接收的字节总数 (kb)
dcgm_pcie_replay_counterGPU PCIe重试的总数
dcgm_gpu_utilizationGPU 利用率(%)
dcgm_mem_copy_utilizationGPU 内存利用率(%)
dcgm_enc_utilizationGPU 编码器利用率(%)
dcgm_dec_utilizationGPU 解码器利用率(%)
dcgm_xid_errorsGPU 上一个xid错误的值
dcgm_power_violationGPU 功率限制导致的节流持续时间(us)
dcgm_thermal_violationGPU 热约束节流持续时间(us)
dcgm_sync_boost_violationGPU 同步增强限制,限制持续时间(us)
dcgm_fb_freeGPUfb(帧缓存)的剩余(MiB)
dcgm_fb_usedGPUfb(帧缓存)的使用(MiB)

相关文章:

k8s DCGM GPU采集指标项说明

dcgm-exporter 采集指标项 指标解释dcgm_fan_speed_percentGPU风扇转速占比(%)dcgm_sm_clockGPU sm 时钟(MHz)dcgm_memory_clockGPU 内存时钟(MHz)dcgm_gpu_tempGPU 运行的温度(℃)dcgm_power_usageGPU 的功率(w)dcgm_pcie_tx_throughputGPU PCIeTX 传输的字节总数 (kb)dcgm_pc…...

从线程安全到锁粒度,使用Redis分布式锁的注意事项

关于 Redis 的分布式锁 在分布式的场景下,多个服务器之间的资源竞争和访问频繁性,为了数据的安全和性能的优化,我们需要引入分布式锁的概念,这把锁可以加在上层业务需要的共享数据/资源上,能够同步协调多个服务器的访…...

CopyOnWriteArrayList 的底层原理与多线程注意事项

文章目录 CopyOnWriteArrayList 的底层原理与多线程注意事项1. CopyOnWriteArrayList 底层原理1.1 概念说明1.2 实现原理1.3 优点1.4 缺点 2. CopyOnWriteArrayList 多线程注意事项与实例2.1 注意事项2.2 示例2.2.1 示例代码 3. 总结 CopyOnWriteArrayList 的底层原理与多线程注…...

互斥锁深度理解与使用

大家好,我是易安! 我们知道一个或者多个操作在CPU执行的过程中不被中断的特性,称为“原子性”。理解这个特性有助于你分析并发编程Bug出现的原因,例如利用它可以分析出long型变量在32位机器上读写可能出现的诡异Bug,明明已经把变量…...

Elasticsearch --- 数据聚合、自动补全

一、数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这…...

Haproxy搭建web群集

一.常见的web集群调度器 1、目前常见的web集群调度器分为软件和硬件 2、软件通常使用开源的LVS、Haproxy、Nginx ​ LVS 性能最好,但搭建复杂。Nginx并发量,性能低于Haproxy 3、硬件一般使用比较多的是F5,也有很多人使用国内的一些产品&a…...

Packet Tracer - 配置和验证小型网络

Packet Tracer - 配置和验证小型网络 地址分配表 设备 接口 IP 地址 子网掩码 默认网关 RTA G0/0 10.10.10.1 255.255.255.0 不适用 G0/1 10.10.20.1 255.255.255.0 不适用 SW1 VLAN1 10.10.10.2 255.255.255.0 10.10.10.1 SW2 VLAN1 10.10.20.2 255.25…...

Baumer工业相机堡盟工业相机如何通过BGAPI SDK获取相机设备的各种固件信息如DeviceID或者SerialNumber等(C++)

项目场景 Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。 Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具…...

java 的参数传递

一、疑惑引入 首先&#xff0c;我们从一个例子来引出这个问题&#xff1a; public static void main(String[] args) throws IOException {List<String> mockList Lists.newArrayList("a", "b");System.out.println("1: " mockList);L…...

【面试长文】HashMap的数据结构和底层原理以及在JDK1.6、1.7和JDK8中的演变差异

文章目录 HashMap的数据结构和底层原理以及在JDK1.6、1.7和JDK8中的演变差异HashMap的数据结构和原理JDK1.6、1.7和1.8中的HashMap源码演变JDK1.6JDK1.7JDK1.8 总结自己实现一个简单的HashMapHashMap的时间复杂度分析HashMap的空间复杂度分析HashMap的应用场景HashMap的弊端及解…...

【25】linux进阶——网络文件系统NFS

大家好&#xff0c;这里是天亮之前ict&#xff0c;本人网络工程大三在读小学生&#xff0c;拥有锐捷的ie和红帽的ce认证。每天更新一个linux进阶的小知识&#xff0c;希望能提高自己的技术的同时&#xff0c;也可以帮助到大家 另外其它专栏请关注&#xff1a; 锐捷数通实验&…...

JAVA入坑之JAVADOC(Java API 文档生成器)与快速生成

目录 一、JAVADOC&#xff08;Java API 文档生成器&#xff09; 1.1概述 1.2Javadoc标签 1.3Javadoc命令 1.4用idea自带工具生成API帮助文档 二、IDEA如何生成get和set方法 三、常见快捷方式 3.1快速生成main函数 3.2快速生成println()语句 3.3快速生成for循环 3.4“…...

React | React组件化开发

✨ 个人主页&#xff1a;CoderHing &#x1f5a5;️ React .js专栏&#xff1a;React .js React组件化开发 &#x1f64b;‍♂️ 个人简介&#xff1a;一个不甘平庸的平凡人&#x1f36c; &#x1f4ab; 系列专栏&#xff1a;吊打面试官系列 16天学会Vue 11天学会React Node…...

云计算的优势与未来发展趋势

一、前言二、云计算的基础概念2.1 云计算的定义2.2 云计算的发展历程2.3 云计算的基本架构2.4 云计算的主要服务模式 三、企业采用云计算的优势3.1 降低成本3.2 提高效率和灵活性3.3 提升信息系统的安全性和可靠性3.4 拥有更加丰富的应用和服务 四、行业应用案例4.1 金融行业4.…...

shell编程lesson01

命令行和脚本关系 命令行&#xff1a;单一shell命令&#xff0c;命令行中编写与执行&#xff1b; 脚本&#xff1a;众多shell命令组合成一个完成特定功能的程序&#xff0c;在脚本文件中进行编写维护。 脚本是一个文件&#xff0c;一个包含有一组命令的文件。 编写一个shel…...

看看人家的MyBatis批量插入数据优化,从120s到2.5s,那叫一个优雅!

粗略的实验 最后 最近在压测一批接口的时候&#xff0c;我发现接口处理速度比我们预期的要慢。这让我感到有点奇怪&#xff0c;因为我们之前已经对这些接口进行了优化。但是&#xff0c;当我们进行排查时&#xff0c;发现问题出在数据库批量保存这块。 我们的项目使用了 myb…...

软件和信息服务业专题讲座

软件和信息服务业专题讲座 单选题&#xff08;共 10 题&#xff0c;每题 3 分&#xff09; 1、根据本讲&#xff0c;我国要加强物联网应用领域&#xff08;&#xff09;开发和应用。 A、大数据 2、根据本讲&#xff0c;要充分发挥软件对城市管理和惠民服务的&#xff08;&am…...

由 ChatGPT 团队开发,堪称辅助神器!IntelliJ IDEA 神级插件

什么是Bito&#xff1f; 为什么要使用Bito&#xff1f; 如何安装Bito插件 如何使用Bito插件 什么是Bito&#xff1f; Bito是一款由ChatGPT团队开发的IntelliJ IDEA编辑器插件&#xff0c;旨在提高开发人员的工作效率。此插件强大之处在于它不仅可以帮助开发人员更快地提交…...

spass modeler

课时1&#xff1a;SPSS Modeler 简介 本课时一共分为五个模块&#xff0c;分别是Modeler概述、工具安装、窗口说明以及功能介绍和应用案例。相信通过本课时内容的学习&#xff0c;大家将会对SPSS Modeler有个基础的了解. 在学习本节课内容之前&#xff0c;先来看看本节课我们究…...

kafka的push、pull分别有什么优缺点

文章目录 kafka的push、pull分别有什么优缺点Push 模式优点缺点 Pull 模式优点缺点 实践操作 kafka的push、pull分别有什么优缺点 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台&#xff0c;广泛应用于各大互联网公司的消息系统中。在 Kafka 中&#xff0c;生产者使用…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...