轻松搭建自己的ChatGPT聊天机器人,让AI陪你聊天!
随着人工智能技术的发展,聊天机器人已经成为了我们生活中的一部分。无论是在客服机器人上还是智能助手上,聊天机器人都能够给我们带来真正的便利和快乐。现在,你也可以轻松搭建自己的ChatGPT聊天机器人,和它天马行空地聊天!
第一步:准备所需材料
首先,你需要一些基本的技术知识和一些必备的软件工具,包括:
-
Python基本语法:ChatGPT是使用Python开发的,因此你需要先掌握一些基本的Python语法。
-
PyTorch:ChatGPT是使用PyTorch构建的,因此在搭建ChatGPT之前,你需要先了解PyTorch的基本使用方法。
-
Transformers库:这是一个用于自然语言处理的Python库,可以帮助我们轻松地搭建和训练ChatGPT模型。
第二步:搭建ChatGPT模型
现在你已经准备好了所有必要的软件工具,那么就让我们开始搭建ChatGPT模型吧!
以下是一个简单的示例代码,可以使用Transformers和PyTorch搭建ChatGPT模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel# 加载预训练模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')# 输入文本
text = 'Hello, how are you?'# 将文本编码为ID
input_ids = tokenizer.encode(text, return_tensors='pt')# 生成响应
output = model.generate(input_ids, max_length=1000)# 将响应解码为文本
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(output_text)
这段代码使用了GPT2模型和分词器,从输入文本中生成了一个1000个字符的响应。
第三步:训练ChatGPT模型
如果你想让你的ChatGPT模型可以更加智能和对话更加流畅,那么你需要利用机器学习的方法对模型进行训练。
以下是一个简单的示例代码,可以使用Transformers和PyTorch训练ChatGPT模型:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments# 加载预训练模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')# 加载数据集
dataset = TextDataset(tokenizer=tokenizer, file_path='data.txt', block_size=128)# 设置训练参数
training_args = TrainingArguments(output_dir='./results', # output directoryoverwrite_output_dir=True, # overwrite the content of the output directorynum_train_epochs=1, # number of training epochsper_device_train_batch_size=32, # batch size for trainingsave_steps=1000, # save checkpoint every 1000 stepssave_total_limit=2, # only keep last 2 checkpointswarmup_steps=500, # number of warmup steps for learning rate schedulerweight_decay=0.01, # strength of weight decaylogging_dir='./logs', # directory for storing logslogging_steps=1000, # log every 1000 steps)# 设置DataCollator
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False,
)# 构建Trainer
trainer = Trainer(model=model,args=training_args,data_collator=data_collator,train_dataset=dataset,
)# 开始训练
trainer.train()
这段代码使用了TextDataset和DataCollatorForLanguageModeling来读取和处理数据集,使用GPT2模型和分词器训练ChatGPT模型,并将结果保存在results目录中。
第四步:让ChatGPT机器人和你聊天
现在你已经成功搭建和训练了自己的ChatGPT机器人了!那么让我们来看看如何和它进行聊天。
以下是一个简单的示例代码,可以使用训练好的ChatGPT机器人进行聊天:
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel# 加载训练好的模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained('results')
model = GPT2LMHeadModel.from_pretrained('results')# 开始聊天
while True:# 获取用户输入user_input = input('You: ')# 将用户输入编码为IDinput_ids = tokenizer.encode(user_input, return_tensors='pt')# 生成响应output = model.generate(input_ids, max_length=1000)# 将响应解码为文本output_text = tokenizer.decode(output[0], skip_special_tokens=True)# 输出机器人的响应print('ChatGPT: ' + output_text)
这段代码使用了训练好的模型和分词器,可以和ChatGPT机器人进行聊天交流!
结语
通过这份资料,你已经学会了如何搭建、训练和使用ChatGPT聊天机器人了!希望这份资料能够帮助你打造出一款智能、有趣的聊天机器人,让你的生活充满更多色彩!
相关文章:
轻松搭建自己的ChatGPT聊天机器人,让AI陪你聊天!
随着人工智能技术的发展,聊天机器人已经成为了我们生活中的一部分。无论是在客服机器人上还是智能助手上,聊天机器人都能够给我们带来真正的便利和快乐。现在,你也可以轻松搭建自己的ChatGPT聊天机器人,和它天马行空地聊天&#x…...
CompletableFutrue异步处理
异步处理 一、线程的实现方式 1. 线程的实现方式 1.1 继承Thread class ThreadDemo01 extends Thread{Overridepublic void run() {System.out.println("当前线程:" Thread.currentThread().getName());} }1.2 实现Runnable接口 class ThreadDemo02 implements …...
【前端面经】JS-对象的可枚举性
JavaScript中的对象是非常重要的数据类型,它们作为编程中的基础构建块,可以被用来表示各种数据结构。对象是由属性构成的,每个属性都包含一个名字和一个值。属性值可以是基本类型或其他对象。在JavaScript中,对象属性有许多特性&a…...
沁恒 CH32V208(三): CH32V208 Ubuntu22.04 Makefile VSCode环境配置
目录 沁恒 CH32V208(一): CH32V208WBU6 评估板上手报告和Win10环境配置沁恒 CH32V208(二): CH32V208的储存结构, 启动模式和时钟沁恒 CH32V208(三): CH32V208 Ubuntu22.04 Makefile VSCode环境配置 硬件部分 CH32V208WBU6 评估板WCH-LinkE 或 WCH-Link 硬件环境与Windows下…...
日撸 Java 三百行day38
文章目录 说明day381.Dijkstra 算法思路分析2.Prim 算法思路分析3.对比4.代码 说明 闵老师的文章链接: 日撸 Java 三百行(总述)_minfanphd的博客-CSDN博客 自己也把手敲的代码放在了github上维护:https://github.com/fulisha-ok/…...
玩转肺癌目标检测数据集Lung-PET-CT-Dx ——④转换成PASCAL VOC格式数据集
文章目录 关于PASCAL VOC数据集目录结构 ①创建VOC数据集的几个相关目录XML文件的形式 ②读取dcm文件与xml文件的配对关系③创建VOC格式数据集④创建训练、验证集 本文所用代码见文末Github链接。 关于PASCAL VOC数据集 pascal voc数据集是关于计算机视觉,业内广泛…...
两种使用 JavaScript 实现网页高亮关键字的方法
随着各种类型的信息源变得越来越多,我们常常需要通过搜索引擎来找到自己需要的信息。在搜索结果中,通常会高亮显示与我们搜索的关键词相关的内容,这样我们就能更快地找到自己需要的信息。 在本文中,我们将探讨如何使用 JavaScrip…...
【SpringBoot】SpringBoot集成ElasticSearch
文章目录 第一步,导入jar包,注意这里的jar包版本可能和你导入的不一致,所以需要修改第二步,编写配置类第三步,填写yml第四步,编写util类第五步,编写controller类第六步,测试即可 第一…...
从 Elasticsearch 到 Apache Doris,10 倍性价比的新一代日志存储分析平台
作者介绍:肖康,SelectDB 技术副总裁 导语 日志数据的处理与分析是最典型的大数据分析场景之一,过去业内以 Elasticsearch 和 Grafana Loki 为代表的两类架构难以同时兼顾高吞吐实时写入、低成本海量存储、实时文本检索的需求。Apache Doris…...
探讨Redis缓存问题及解决方案:缓存穿透、缓存击穿、缓存雪崩与缓存预热(如何解决Redis缓存中的常见问题并提高应用性能)
Redis是一种非常流行的开源缓存系统,用于缓存数据以提高应用程序性能。但是,如果我们不注意一些缓存问题,Redis也可能会导致一些性能问题。在本文中,我们将探讨Redis中的一些常见缓存问题,并提供解决方案。 一、缓存穿…...
【Python】怎么在pip下载的时候设置镜像?(常见的清华镜像、阿里云镜像以及中科大镜像)
一、清华镜像 在使用 pip 命令下载 Python 包时,可以通过设置 pip 的镜像源为清华镜像来加快下载速度。 以下是如何设置清华镜像源的步骤: 打开终端或命令行窗口执行以下命令添加清华镜像源: pip config set global.index-url https://py…...
【AI面试】目标检测中one-stage、two-stage算法的内容和优缺点对比汇总
在深度学习领域中,图像分类,目标检测和目标分割是三个相对来说较为基础的任务了。再加上图像生成(GAN,VAE,扩散模型),keypoints关键点检测等等,基本上涵盖了图像领域大部分场景了。 …...
stack、queue和priority_queue的使用介绍--C++
目录 一、stack介绍 使用方法 二、queue介绍 queue的使用 三、priority_queeue 优先级队列介绍 一、stack介绍 1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。 2. stack是作为容器…...
python遍历数组
在Python中,有多种方式可以遍历数组,以下是其中的几种方式: 1. 使用for循环: my_list [1, 2, 3, 4, 5] for x in my_list: print(x) 2. 使用while循环和索引: my_list [1, 2, 3, 4, 5] i 0 while i < len(m…...
红黑树理论详解与Java实现
文章目录 基本定义五大性质红黑树和2-3-4树的关系红黑树和2-3-4树各结点对应关系添加结点到红黑树注意事项添加的所有情况 添加导致不平衡叔父节点不是红色节点(祖父节点为红色)添加不平衡LL/RR添加不平衡LR/RL 叔父节点是红色节点(祖父节点为…...
container的讲解
我们做开发经常会遇到这样的一个需求,要开发一个响应式的网站,但是我们需要我们的元素样式跟随着我们的元素尺寸大小变化而变化。而我们常用的媒体查询(Media Queries)检测的是视窗的宽高,根本无法满足我们的业务需求&…...
JavaScript 箭头函数
(许多人所谓的成熟,不过是被习俗磨去了棱角,变得世故而实际了。那不是成熟,而是精神的早衰和个性的消亡。真正的成熟,应当是独特个性的形成,真实自我的发现,精神上的结果和丰收。——周国平&…...
简单理解Transformer注意力机制
这篇文章是对《动手深度学习》注意力机制部分的简单理解。 生物学中的注意力 生物学上的注意力有两种,一种是无意识的,零一种是有意识的。如下图1,由于红色的杯子比较突出,因此注意力不由自主指向了它。如下图2,由于…...
Vue3面试题:20道含答案和代码示例的练习题
Vue3中响应式数据的实现原理是什么? 答:Vue3中使用Proxy对象来实现响应式数据。当数据发生变化时,Proxy会自动触发更新。 const state {count: 0 }const reactiveState new Proxy(state, {set(target, key, value) {target[key] valueco…...
Oracle数据库创建用户
文章目录 1 查看当前连接的容器2 查看pdb下库的信息3 将连接改到XEPDB1下,并查看当前连接4 创建表空间5 创建用户6 用户赋权7 删除表空间、用户7.1 删除表空间7.2 删除用户 8 CDB与PDB的概念 1 查看当前连接的容器 SQL> show con_name;CON_NAME ---------------…...
互联网摸鱼日报(2023-04-30)
互联网摸鱼日报(2023-04-30) InfoQ 热门话题 被ChatGPT带火的大模型,如何实际在各行业落地? Service Mesh的未来在于网络 百度 Prometheus 大规模业务监控实战 软件技术栈商品化:应用优先的云服务如何改变游戏规则…...
第二章--第一节--什么是语言生成
一、什么是语言生成 1.1. 说明语言生成的概念及重要性 语言生成是指使用计算机程序来生成符合人类自然语言规范的文本的过程。它是自然语言处理(NLP)领域中的一个重要分支,涉及到语言学、计算机科学和人工智能等领域的交叉应用。语言生成技术可以被广泛地应用于自动问答系…...
HTML <!--...--> 标签
实例 HTML 注释: <!--这是一段注释。注释不会在浏览器中显示。--><p>这是一段普通的段落。</p>浏览器支持 元素ChromeIEFirefoxSafariOpera<!--...-->YesYesYesYesYes 所有浏览器都支持注释标签。 定义和用法 注释标签用于在源代码中…...
TinyML:使用 ChatGPT 和合成数据进行婴儿哭声检测
故事 TinyML 是机器学习的一个领域,专注于将人工智能的力量带给低功耗设备。该技术对于需要实时处理的应用程序特别有用。在机器学习领域,目前在定位和收集数据集方面存在挑战。然而,使用合成数据可以以一种既具有成本效益又具有适应性的方式训练 ML 模型,从而消除了对大量…...
JavaScript中的Concurrency并发:异步操作下的汉堡制作示例
这篇文章想讲一下JavaScript中同步与异步操作在一个简单的示例中的应用。我们将以制作汉堡为例,展示如何使用同步方法、回调函数(callbacks)和Promise与async/await来实现该过程。 Let’s imagine we’re trying to make a burger: 1. Get …...
微信小程序开发一个多少钱
小程序开发是当前比较流行的一项技术服务,能够为企业和个人带来巨大的商业价值和社会价值,但是小程序开发费用也是潜在的成本之一。在选择小程序开发服务时,了解开发费用如何计算、影响价格的因素以及如何降低成本等方面的知识,可…...
Python基础入门(2)—— 什么是控制语句、列表、元组和序列?
文章目录 01 | 🚄控制语句02 | 🚅列表03 | 🚈元组04 | 🚝序列05 | 🚞习题 A bold attempt is half success. 勇敢的尝试是成功的一半。 前面学习了Python的基本原则、变量、字符串、运算符和数据类型等知识,…...
计算机专业大一的一些学习规划建议!
大家好,我是小北。 五一嗖的一下就过啦~ 对于还在上学的同学五一一过基本上意味着这学期过半了,很多大一、大二的同学会有专业分流、转专业等事情。 尤其是大二的时候,你会发现身边有些同学都加入各种实验室了,有忙着打ACM、学生…...
万万没想到在生产环境翻车了,之前以为很熟悉 CountDownLatch
前言 需求背景 具体实现 解决方案 总结 前言 之前我们分享了CountDownLatch的使用。这是一个用来控制并发流程的同步工具,主要作用是为了等待多个线程同时完成任务后,在进行主线程任务。然而,在生产环境中,我们万万没想到会…...
Springboot整合Jasypt实战
Springboot整合Jasypt实战 引入依赖 <dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-boot-starter</artifactId><version>3.0.5</version> </dependency>配置jasypt # 配置jasypt相关信息…...
58同城保定网站建设/企业站seo价格
问题 Image和Label数据成对写入TFRecord文件,按理训练过程中读取的Image和Label也应该是一一对应的,但有的时候发现Image和Label并不能匹配。如: 将以下数据写入TFrecord中: Image 1 —— Label 1 Image 2 —— Label 2 Image …...
网站的交互体验/搜索引擎优化的目的是对用户友好
上海工程技术大学C语言考试试卷一、选择题(本题共15小题,每小题2分,共30分)1.下列字符串能作为变量名的是()A)3int B)float C)_2xy D)break2.以下选项中可作为C语言合法整数的是(A)1010B B)0287 C)0x02h3 D)0x0ffa3.下列正确的C语句是(A)x2 B)scanf(“%d…...
南京做网站费用/济南网络推广网络营销
处理移动端click事件300毫秒延迟。FastClick 是一个简单,易于使用的js库用于消除在移动浏览器上触发click事件与一个物理Tap(敲击)之间的300延迟。 1、为什么会延迟? 从点击屏幕上的元素到触发元素的 click 事件,移动浏览器会有大约 300 毫秒…...
重庆网络安全公司/百度问答seo
Oracle笔记 索引 作用:用于加快查询速度 创建索引: create unique index onemp(emp_name,emp_salary); 确认索引: select * from user_ind_columns ic,user_indexes ix where ix.INDEX_NAME ic.INDEX_NAME and ic.TABLE_NAME emp; 索引结构: 1. B*…...
公司网站制作步骤/同城推广
2019独角兽企业重金招聘Python工程师标准>>> 本来没准备换编辑器,但是dede自带的编辑器实在是太难用了。所以准备自己动手整合一下百度的ueditor编辑器。 1,首先得自己下一个ueditor的源码包,传送门-》http://ueditor.baidu.co…...
wap网站制作怎么做/泉州关键词搜索排名
在工作过程中,我们难免会遇到这样的问题,我们想保存一些数据,但是我们对这些数据的要求并不高,有时候往往只是想要某个时间范围内的数据,比如我们如果永远只关心从当前时间往前推半年内的数据特性,那么我们…...