【MATLAB数据处理实用案例详解(17)】——利用概念神经网络实现柴油机故障诊断
目录
- 一、问题描述
- 二、利用概念神经网络实现柴油机故障诊断原理
- 三、算法步骤
- 3.1 定义样本
- 3.2 样本归一化
- 3.3 创建网络模型
- 3.4 测试
- 3.5 显示结果
- 四、运行结果
- 五、完整代码
一、问题描述
柴油机的结构较为复杂,工作状况非常恶劣,因此发生故障的可能性较大。本例采用概率神经网络建立分类模型,采集柴油机振动信号作为输入,成功实现了故障有无的判断和故障类型的判断。
柴油机故障诊断可以抽象对一种分类问题,有无故障的判断,是一种二分类问题,而具体故障类型的判断,为多类分类问题。正确判断的关键在于选择合适的特征来描述柴油机的工作状况,以及选用合适的分类器将不同类别的样本分开。
二、利用概念神经网络实现柴油机故障诊断原理
- 特征选择。柴油机运行时包含丰富的特征信息,可以选择气压、油压、热力性能参数、振动参数等。本例采用振动时域信号作为特征信号。
- 分类器设计。这里采用概率神经网络来完成。
定义柴油机的五种故障类型:
类型 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
分类模式 | 第一缸喷油压力过大 | 第一缸喷油压力过小 | 第一缸喷油器针阀磨损 | 油路堵塞 | 供油提前角提前 | 正常状态 |
采集柴油机正常运转和5种故障模式下的振动信号,再对振动波形做统计学处理,得到能量参数、峰度参数、波形参数、裕度参数、脉冲参数和峰值参数,形成一个6维向量:
x = [ x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ] {\bf{x}} = \left[ {{x_1},{x_2},{x_3},{x_4},{x_5},{x_6}} \right] x=[x1,x2,x3,x4,x5,x6]
收集2份每种分类模式的样本,共计12份训练样本,详细样本见3.1节。
用于柴油机故障诊断的概率神经网络模型包含12份输入样本,每个样本为6维向量,分类模式为6种,建立的概率神经网络结构如下:
算法流程图如下:
三、算法步骤
3.1 定义样本
每列为一个样本,训练样本为612矩阵,测试样本为66矩阵:
%% 定义训练样本和测试样本
% 故障1
pro1 = [1.97,9.5332,1.534,16.7413,12.741,8.3052;1.234,9.8209,1.531,18.3907,13.988,9.1336]';
% 故障2
pro2 = [0.7682,9.5489,1.497,14.7612,11.497,7.68;0.7053,9.5317,1.508,14.3161,11.094,7.3552]';
% 故障3
pro3 = [0.8116,8.1302,1.482,14.3171,11.1105,7.4967;0.816,9.0388,1.497,15.0079,11.6242,7.7604]';
% 故障4
pro4 = [1.4311,8.9071,1.521,15.746,12.0088,7.8909;1.4136,8.6747,1.53,15.3114,11.6297,7.5984]';
% 故障5
pro5 = [1.167,8.3504,1.51,12.8119,9.8258,6.506;1.3392,9.0865,1.493,15.0798,11.6764,7.8209]';
% 正常运转
normal = [1.1803,10.4502,1.513,20.0887,15.465,10.2193;1.2016,12.4476,1.555,20.6162,15.755,10.1285]';% 训练样本
trainx = [pro1, pro2, pro3, pro4, pro5, normal];
% 训练样本的标签
trlab = 1:6;
trlab = repmat(trlab, 2, 1);
trlab = trlab(:)';
3.2 样本归一化
使用mapminmax函数完成训练样本的归一化:
[x0,s] = mapminmax(trainx);
3.3 创建网络模型
newpnn函数唯一的可调参数为平滑因子spread,在这里将其设置为1:
spread = 1;
net = newpnn(x0, ind2vec(trlab), spread);
3.4 测试
首先需要定义测试样本及其正确分类模式标签,然后将测试样本按与训练样本相同的方式进行归一化,最后将其输入到上一步创建的网络模型中:
% 测试样本
testx = [0.7854,8.7568,1.4915,14.4547,11.1971,7.5071;1.1833,11.8189,1.5481,20.2626,15.5814,10.0646;0.661,8.8735,1.508,13.598,10.5171,6.9744;1.3111,7.9501,1.4915,14.9174,10.7511,7.7127;1.2394,9.6018,1.5366,18.219,13.851,9.0142; 1.2448,8.3654,1.5413,15.2558,11.5643,7.503]';% 测试样本标签(正确类别)
testlab = [3,6,2,5,1,4];% 测试样本归一化
xx = mapminmax('apply',testx, s);% 将测试样本输入模型
s = sim(net,xx);% 将向量形式的分类结果表示为标量
res = vec2ind(s);
3.5 显示结果
显示6个测试样本的诊断结果,这6个样本分别属于一种分类模式:
strr = cell(1,6);
for i=1:6if res(i) == testlab(i)strr{i} = '正确';elsestrr{i} = '错误';end
enddiagnose_ = {'第一缸喷油压力过大','第一缸喷油压力过小', '第一缸喷油器针阀磨损',...'油路堵塞', '供油提前角提前 ','正常'};fprintf('诊断结果:\n');
fprintf(' 样本序号 实际类别 判断类别 正/误 故障类型 \n');
for i =1:6fprintf(' %d %d %d %s %s\n',...i, testlab(i), res(i), strr{i}, diagnose_{res(i)});
end
四、运行结果
运行结果如下:
五、完整代码
完整代码如下:
%% 清空工作空间
clear,clc
close all%% 定义训练样本和测试样本
% 故障1
pro1 = [1.97,9.5332,1.534,16.7413,12.741,8.3052;1.234,9.8209,1.531,18.3907,13.988,9.1336]';
% 故障2
pro2 = [0.7682,9.5489,1.497,14.7612,11.497,7.68;0.7053,9.5317,1.508,14.3161,11.094,7.3552]';
% 故障3
pro3 = [0.8116,8.1302,1.482,14.3171,11.1105,7.4967;0.816,9.0388,1.497,15.0079,11.6242,7.7604]';
% 故障4
pro4 = [1.4311,8.9071,1.521,15.746,12.0088,7.8909;1.4136,8.6747,1.53,15.3114,11.6297,7.5984]';
% 故障5
pro5 = [1.167,8.3504,1.51,12.8119,9.8258,6.506;1.3392,9.0865,1.493,15.0798,11.6764,7.8209]';
% 正常运转
normal = [1.1803,10.4502,1.513,20.0887,15.465,10.2193;1.2016,12.4476,1.555,20.6162,15.755,10.1285]';% 训练样本
trainx = [pro1, pro2, pro3, pro4, pro5, normal];
% 训练样本的标签
trlab = 1:6;
trlab = repmat(trlab, 2, 1);
trlab = trlab(:)';%% 样本的归一化,s为归一化设置
[x0,s] = mapminmax(trainx);%% 创建概率神经网络
tic;
spread = 1;
net = newpnn(x0, ind2vec(trlab), spread);
toc%% 测试
% 测试样本
testx = [0.7854,8.7568,1.4915,14.4547,11.1971,7.5071;1.1833,11.8189,1.5481,20.2626,15.5814,10.0646;0.661,8.8735,1.508,13.598,10.5171,6.9744;1.3111,7.9501,1.4915,14.9174,10.7511,7.7127;1.2394,9.6018,1.5366,18.219,13.851,9.0142; 1.2448,8.3654,1.5413,15.2558,11.5643,7.503]';% 测试样本标签(正确类别)
testlab = [3,6,2,5,1,4];% 测试样本归一化
xx = mapminmax('apply',testx, s);% 将测试样本输入模型
s = sim(net,xx);% 将向量形式的分类结果表示为标量
res = vec2ind(s);%% 显示结果
strr = cell(1,6);
for i=1:6if res(i) == testlab(i)strr{i} = '正确';elsestrr{i} = '错误';end
enddiagnose_ = {'第一缸喷油压力过大','第一缸喷油压力过小', '第一缸喷油器针阀磨损',...'油路堵塞', '供油提前角提前 ','正常'};fprintf('诊断结果:\n');
fprintf(' 样本序号 实际类别 判断类别 正/误 故障类型 \n');
for i =1:6fprintf(' %d %d %d %s %s\n',...i, testlab(i), res(i), strr{i}, diagnose_{res(i)});
end
相关文章:

【MATLAB数据处理实用案例详解(17)】——利用概念神经网络实现柴油机故障诊断
目录 一、问题描述二、利用概念神经网络实现柴油机故障诊断原理三、算法步骤3.1 定义样本3.2 样本归一化3.3 创建网络模型3.4 测试3.5 显示结果 四、运行结果五、完整代码 一、问题描述 柴油机的结构较为复杂,工作状况非常恶劣,因此发生故障的可能性较大…...
神奇字符串、密钥格式化----2023/5/6
神奇字符串----2023/5/6 神奇字符串 s 仅由 ‘1’ 和 ‘2’ 组成,并需要遵守下面的规则: 神奇字符串 s 的神奇之处在于,串联字符串中 ‘1’ 和 ‘2’ 的连续出现次数可以生成该字符串。 s 的前几个元素是 s “1221121221221121122……” 。…...

STM32F4_十进制和BCD码的转换
目录 前言 1. BCD码 2. BCD码和十进制转换的算法 前言 最近在学习STM32单片机(不仅仅是32)的RTC实时时钟系统的过程中,需要配置时钟的时间、日期;这些都需要实现BCD码和十进制之间进行转换。这里和大家一起学习BCD码和十进制之…...
random — 伪随机数生成器(史上总结最全)
目的:实现几种类型的伪随机数生成器。 random 模块基于 Mersenne Twister 算法提供了一个快速的伪随机数生成器。Mersenne Twister 最初开发用于为蒙特卡洛模拟器生成输入,可生成具有分布均匀,大周期的数字,使其可以广泛用于各种…...

基于VBA实现成绩排序的最佳方法-解放老师的双手
作为一名老师,每到期末就要面对一件让人头疼的事情——成绩表统计。 首先,要收集每个学生的考试成绩。这需要花费大量的时间和精力,因为每个学生都有多门科目的成绩需要统计。 其次,要将每个学生的成绩录入到电子表格中。这看起来…...
OCAF如何实现引用关系和拓扑关系
在 OpenCASCADE 中,TDF_Label 是用来保存对象及其属性的基本单元。TDF_Label 可以通过添加不同类型的属性来保存不同的数据类型。属性是继承自 TDF_Attribute 类的对象,每个属性都有一个唯一的标识符(GUID)来识别其类型。TDF_Label是OpenCASCADE中用来管理数据的标签类,它…...
自动创建设备节点
在成功加载驱动模块之后,还需要使用 mknod命令创建设备节点,才能在/dev目录下创建对应的设备文件。自动创建设备节点的功能需要依赖 mdev 设备管理机制,在使用 buildroot 构建 rootfs 的时候,会默认构建 mdev 的功能,m…...

JavaWeb ( 六 ) JSP
2.4.JSP JSP (Java Server Pages) : 一种在服务器端生成动态页面的技术,本质上就是Servlet。将HTML代码嵌入到Java代码中, 通过Java逻辑控制HTML代码的结构从而生成页面。在MVC中通常担任视图层(view),负责信息的展示与收集。 2…...

2023世界超高清视频产业发展大会博冠8K明星展品介绍
2023世界超高清视频产业发展大会博冠8K明星展品介绍: 一、博冠8K全画幅摄像机B1 这是一款面向广电应用的机型,可适配外场ENG制作轻量化需求,应用于8K单边机位、新闻、专题的拍摄工作,也可应用于体育转播、文艺节目等特殊机位及各…...

Map接口以及Collections工具类
文章目录 1.Map接口概述1.1 Map的实现类的结构1.2 Map中存储的key-value结构的理解1.3 HashMap的底层实现原理(以JDK7为例)1.4 Map接口的常用方法1.5 TreeMap1.6 Map实现类之五: Properties 1.Collections工具类1.1方法1.1.1 排序操作(均为static方法)1.1.2 查找、替换 1.Map接…...

SOA协议DDS和Some/IP对比
SOME/IP 和 DDS 均已被纳入AUTOSAR AP的平台标准中。 SOME/IP 和 DDS是在不同的应用场景和不同的需求下诞生的技术,所以它们之间注定有很大的区别。 SOME/IP SOME/IP的全称为:Scalable service-Oriented MiddlewarE over IP,是一种面向服务…...
Sass使用
前言: 这份记录,主要是记录学习sass的学习记录,用于记录一些本人认为可能以后会用到的比较常用的一些知识点,更详细的请看sass官网 功能1-嵌套规则 Sass 允许将一套 CSS 样式嵌套进另一套样式中,内层的样式将它外层的…...
超大excel文件读,避免内存溢出
excel40M,但是用传统的读取excel方法,会报内存溢出的错误。 所以采用了下面的方式,能解决此问题: maven依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><ve…...

第0章 学习之前的准备
突然想写点关于linux的东西,一是将自己几十年来零碎的知识作以串联,二是能为正在学习路上的新手作些指引。而恰好作者的孩子是一位初一的学生,我写的这些东西也正是我手把手教授他的,现在分享出来并且命名为《linux中学教程》&…...
数组排序sort()方法
sort() 方法对数组的项目进行排序。 排序顺序可以是按字母或数字,也可以是升序(向上)或降序(向下)。 默认情况下,sort() 方法将按字母和升序将值作为字符串进行排序。 一、语法 array.sort(compareFunct…...

【.NET AI Books 前言】Azure OpenAI Service 入门
本书是为 .NET 开发者而写的,让 .NET 开发者能快速掌握 Azure OpenAI Service 的使用技巧。 ChatGPT 的到来意味着我们已经置身于 AI 引起的全新变革中,作为开发者你可能将面临几种改变: GPT 模型到来后,如何去架构好企业解决方案…...
散列查找实验(开散列) 题目编号:583
题目描述 请设计一个整型开散列表,散列函数为除留余数法,其中散列表的长度、除留余数法的模和关键码的个数由键盘输入,再根据输入由键盘输入所有的关键码。分别对三个待查值在散列表中进行查找,输出查找结果采用头插法。 输入描…...

Java版spring cloud 企业工程项目管理系统平台源码(三控:进度组织、质量安全、预算资金成本、二平台:招采、设计管理)
工程项目管理软件(工程项目管理系统)对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营,全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#…...

Go type关键字定义新类型和类型别名的区别
type关键字再定义类型和类型别名有很大的区别,前者是新定义一个数据类型,后者是对类型的重命名。 type NewString stringtype OldString stringtype NewString string声明了一个NewString类型,和string具有完全一致的数据结构,确…...

Neural Network学习笔记2
torch.nn: Containers: 神经网络骨架 Convolution Layers 卷积层 Pooling Layers 池化层 Normalization Layers 正则化层 Non-linear Activations (weighted sum, nonlinearity) 非线性激活 Convolution Layers Conv2d torch.nn.Conv2d(in_channels, out_channels, ke…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...