Protobuf: 高效数据传输的秘密武器
当涉及到网络通信和数据存储时,数据序列化一直都是一个重要的话题;特别是现在很多公司都在推行微服务,数据序列化更是重中之重,通常会选择使用 JSON 作为数据交换格式,且 JSON 已经成为业界的主流。但是 Google 这么大的公司使用的却是一种被称为 Protobuf 的数据交换格式,它是有什么优势吗?这篇文章介绍 Protobuf 的相关知识。
GitHub:https://github.com/protocolbuffers/protobuf
官方文档:https://protobuf.dev/overview/
Protobuf 介绍
Protobuf(Protocol Buffers)是由 Google 开发的一种轻量级、高效的数据交换格式,它被用于结构化数据的序列化、反序列化和传输。相比于 XML 和 JSON 等文本格式,Protobuf 具有更小的数据体积、更快的解析速度和更强的可扩展性。
Protobuf 的核心思想是使用协议(Protocol)来定义数据的结构和编码方式。使用 Protobuf,可以先定义数据的结构和各字段的类型、字段等信息,然后使用Protobuf提供的编译器生成对应的代码,用于序列化和反序列化数据。由于 Protobuf 是基于二进制编码的,因此可以在数据传输和存储中实现更高效的数据交换,同时也可以跨语言使用。
相比于 XML 和 JSON,Protobuf 有以下几个优势:
-
更小的数据量:Protobuf 的二进制编码通常比 XML 和 JSON 小 3-10 倍,因此在网络传输和存储数据时可以节省带宽和存储空间。
-
更快的序列化和反序列化速度:由于 Protobuf 使用二进制格式,所以序列化和反序列化速度比 XML 和 JSON 快得多。
-
跨语言:Protobuf 支持多种编程语言,可以使用不同的编程语言来编写客户端和服务端。这种跨语言的特性使得 Protobuf 受到很多开发者的欢迎(JSON 也是如此)。
-
易于维护可扩展:Protobuf 使用 .proto 文件定义数据模型和数据格式,这种文件比 XML 和 JSON 更容易阅读和维护,且可以在不破坏原有协议的基础上,轻松添加或删除字段,实现版本升级和兼容性。
编写 Protobuf
使用 Protobuf 的语言定义文件(.proto)可以定义要传输的信息的数据结构,可以包括各个字段的名称、类型等信息。同时也可以相互嵌套组合,构造出更加复杂的消息结构。
比如想要构造一个地址簿 AddressBook 信息结构。一个 AddressBook 可以包含多个人员 Person 信息,每个 Person 信息可以包含 id、name、email 信息,同时一个 Person 也可以包含多个电话号码信息 PhoneNumber,每个电话号码信息需要指定号码种类,如手机、家庭电话、工作电话等。
如果使用 Protobuf 编写定义文件如下:
// 文件:addressbook.proto
syntax = "proto3";
// 指定 protobuf 包名,防止有相同类名的 message 定义
package com.wdbyte.protobuf;
// 是否生成多个文件
option java_multiple_files = true;
// 生成的文件存放在哪个包下
option java_package = "com.wdbyte.tool.protos";
// 生成的类名,如果没有指定,会根据文件名自动转驼峰来命名
option java_outer_classname = "AddressBookProtos";message Person {// =1,=2 作为序列化后的二进制编码中的字段的唯一标签,也因此,1-15 比 16 会少一个字节,所以尽量使用 1-15 来指定常用字段。optional int32 id = 1;optional string name = 2;optional string email = 3;enum PhoneType {MOBILE = 0;HOME = 1;WORK = 2;}message PhoneNumber {optional string number = 1;optional PhoneType type = 2;}repeated PhoneNumber phones = 4;
}message AddressBook {repeated Person people = 1;
}
Protobuf 文件中的语法解释。
头部全局定义
syntax = "proto3";
指定 Protobuf 版本为版本3(最新版本)package com.wdbyte.protobuf;
指定 Protobuf 包名,防止有相同类名的message
定义,这个包名是生成的类中所用到的一些信息的前缀,并非类所在包。option java_multiple_files = true;
是否生成多个文件。若false
,则只会生成一个类,其他类以内部类形式提供。option java_package =
生成的类所在包。option java_outer_classname
生成的类名,若无,自动使用文件名进行驼峰转换来为类命名。
消息结构具体定义
message Person
定一个了一个 Person 类。
Person 类中的字段被 optional
修饰,被 optional
修饰说明字段可以不赋值。
- 修饰符
optional
表示可选字段,可以不赋值。 - 修饰符
repeated
表示数据重复多个,如数组,如 List。 - 修饰符
required
表示必要字段,必须给值,否则会报错RuntimeException
,但是在 Protobuf 版本 3 中被移除。即使在版本 2 中也应该慎用,因为一旦定义,很难更改。
字段类型定义
修饰符后面紧跟的是字段类型,如 int32
、string
。常用的类型如下:
-
int32、int64、uint32、uint64
:整数类型,包括有符号和无符号类型。 -
float、double
:浮点数类型。 -
bool
:布尔类型,只有两个值,true 和 false。 -
string
:字符串类型。 -
bytes
:二进制数据类型。 -
enum
:枚举类型,枚举值可以是整数或字符串。 -
message
:消息类型,可以嵌套其他消息类型,类似于结构体。
字段后面的 =1,=2
是作为序列化后的二进制编码中的字段的对应标签,因为 Protobuf 消息在序列化后是不包含字段信息的,只有对应的字段序号,所以节省了空间。也因此,1-15 比 16 会少一个字节,所以尽量使用 1-15 来指定常用字段。且一旦定义,不要随意更改,否则可能会对不上序列化信息。
编译 Protobuf
使用 Protobuf 提供的编译器,可以将 .proto
文件编译成各种语言的代码文件(如 Java、C++、Python 等)。
下载编译器:https://github.com/protocolbuffers/protobuf/releases/latest
安装完成后可以使用 protoc
命令编译 proto
文件,如编译示例中的 addressbook.proto
.
protoc --java_out=./java ./resources/addressbook.proto
# --java_out 指定输出 java 格式文件,输出到 ./java 目录
# ./resources/addressbook.proto 为 proto 文件位置
生成后可以看到生产的类文件。
./
├── java
│ └── com
│ └── wdbyte
│ └── tool
│ ├── protos
│ │ ├── AddressBook.java
│ │ ├── AddressBookOrBuilder.java
│ │ ├── AddressBookProtos.java
│ │ ├── Person.java
│ │ ├── PersonOrBuilder.java
└── resources├── addressbook.proto
使用 Protobuf
使用 Java 语言操作 Protobuf,首先需要引入 Protobuf 依赖。
Maven 依赖:
<dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java</artifactId><version>3.22.3</version>
</dependency>
构造消息对象
// 直接构建
PhoneNumber phoneNumber1 = PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME).build();
Person person1 = Person.newBuilder().setId(1).setName("www.wdbyte.com").setEmail("xxx@wdbyte.com").addPhones(phoneNumber1).build();
AddressBook addressBook1 = AddressBook.newBuilder().addPeople(person1).build();
System.out.println(addressBook1);
System.out.println("------------------");// 链式构建
AddressBook addressBook2 = AddressBook.newBuilder().addPeople(Person.newBuilder().setId(2).setName("www.wdbyte.com").setEmail("yyy@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME))).build();
System.out.println(addressBook2);
输出:
people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}------------------
people {id: 2name: "www.wdbyte.com"email: "yyy@126.com"phones {number: "18388888888"type: HOME}
}
序列化、反序列化
序列化:将内存中的数据对象序列化为二进制数据,可以用于网络传输或存储等场景。
反序列化:将二进制数据反序列化成内存中的数据对象,可以用于数据处理和业务逻辑。
下面演示使用 Protobuf 进行字符数组和文件的序列化及反序列化过程。
package com.wdbyte.tool.protos;import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;/*** * @author www.wdbyte.com*/
public class ProtobufTest2 {public static void main(String[] args) throws IOException {PhoneNumber phoneNumber1 = PhoneNumber.newBuilder().setNumber("18388888888").setType(PhoneType.HOME).build();Person person1 = Person.newBuilder().setId(1).setName("www.wdbyte.com").setEmail("xxx@wdbyte.com").addPhones(phoneNumber1).build();AddressBook addressBook1 = AddressBook.newBuilder().addPeople(person1).build();// 序列化成字节数组byte[] byteArray = addressBook1.toByteArray();// 反序列化 - 字节数组转对象AddressBook addressBook2 = AddressBook.parseFrom(byteArray);System.out.println("字节数组反序列化:");System.out.println(addressBook2);// 序列化到文件addressBook1.writeTo(new FileOutputStream("AddressBook1.txt"));// 读取文件反序列化AddressBook addressBook3 = AddressBook.parseFrom(new FileInputStream("AddressBook1.txt"));System.out.println("文件读取反序列化:");System.out.println(addressBook3);}
}
输出:
字节数组反序列化:
people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}文件读取反序列化:
people {id: 1name: "www.wdbyte.com"email: "xxx@wdbyte.com"phones {number: "18388888888"type: HOME}
}
Protobuf 为什么高效
在分析 Protobuf 高效之前,我们先确认一下 Protobuf 是否真的高效,下面将 Protobuf 与 JSON 进行对比,分别对比序列化和反序列化速度以及序列化后的存储占用大小。
测试工具:JMH,FastJSON,
测试对象:Protobuf 的 addressbook.proto
,JSON 的普通 Java 类。
Maven 依赖:
<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.7</version>
</dependency>
<dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-core</artifactId><version>1.33</version>
</dependency>
<dependency><groupId>org.openjdk.jmh</groupId><artifactId>jmh-generator-annprocess</artifactId><version>1.33</version><scope>provided</scope>
</dependency>
先编写与addressbook.proto
结构相同的 Java 类 AddressBookJava.java
.
public class AddressBookJava {List<PersonJava> personJavaList;public static class PersonJava {private int id;private String name;private String email;private PhoneNumberJava phones;// get...set...}public static class PhoneNumberJava {private String number;private PhoneTypeJava phoneTypeJava;// get....set....}public enum PhoneTypeJava {MOBILE, HOME, WORK;}public List<PersonJava> getPersonJavaList() {return personJavaList;}public void setPersonJavaList(List<PersonJava> personJavaList) {this.personJavaList = personJavaList;}
}
序列化大小对比
分别在地址簿中添加 1000 个人员信息,输出序列化后的数组大小。
package com.wdbyte.tool.protos;import java.io.IOException;
import java.util.ArrayList;import com.alibaba.fastjson.JSON;import com.wdbyte.tool.protos.AddressBook.Builder;
import com.wdbyte.tool.protos.AddressBookJava.PersonJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneNumberJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneTypeJava;
import com.wdbyte.tool.protos.Person.PhoneNumber;
import com.wdbyte.tool.protos.Person.PhoneType;/*** @author https://www.wdbyte.com*/
public class ProtobufTest3 {public static void main(String[] args) throws IOException {AddressBookJava addressBookJava = createAddressBookJava(1000);String jsonString = JSON.toJSONString(addressBookJava);System.out.println("json string size:" + jsonString.length());AddressBook addressBook = createAddressBook(1000);byte[] addressBookByteArray = addressBook.toByteArray();System.out.println("protobuf byte array size:" + addressBookByteArray.length);}public static AddressBook createAddressBook(int personCount) {Builder builder = AddressBook.newBuilder();for (int i = 0; i < personCount; i++) {builder.addPeople(Person.newBuilder().setId(i).setName("www.wdbyte.com").setEmail("xxx@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18333333333").setType(PhoneType.HOME)));}return builder.build();}public static AddressBookJava createAddressBookJava(int personCount) {AddressBookJava addressBookJava = new AddressBookJava();addressBookJava.setPersonJavaList(new ArrayList<>());for (int i = 0; i < personCount; i++) {PersonJava personJava = new PersonJava();personJava.setId(i);personJava.setName("www.wdbyte.com");personJava.setEmail("xxx@126.com");PhoneNumberJava numberJava = new PhoneNumberJava();numberJava.setNumber("18333333333");numberJava.setPhoneTypeJava(PhoneTypeJava.HOME);personJava.setPhones(numberJava);addressBookJava.getPersonJavaList().add(personJava);}return addressBookJava;}
}
输出:
json string size:108910
protobuf byte array size:50872
可见测试中 Protobuf 的序列化结果比 JSON 小了将近一倍左右。
序列化速度对比
使用 JMH 进行性能测试,分别测试 JSON 的序列化和反序列以及 Protobuf 的序列化和反序列化性能情况。每次测试前进行 3 次预热,每次 3 秒。接着进行 5 次测试,每次 3 秒,收集测试情况。
package com.wdbyte.tool.protos;import java.util.ArrayList;
import java.util.concurrent.TimeUnit;import com.alibaba.fastjson.JSON;import com.google.protobuf.InvalidProtocolBufferException;
import com.wdbyte.tool.protos.AddressBook.Builder;
import com.wdbyte.tool.protos.AddressBookJava.PersonJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneNumberJava;
import com.wdbyte.tool.protos.AddressBookJava.PhoneTypeJava;
import com.wdbyte.tool.protos.Person.PhoneNumber;
import com.wdbyte.tool.protos.Person.PhoneType;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;/*** @author https://www.wdbyte.com*/
@State(Scope.Thread)
@Fork(2)
@Warmup(iterations = 3, time = 3)
@Measurement(iterations = 5, time = 3)
@BenchmarkMode(Mode.Throughput) // Throughput:吞吐量,SampleTime:采样时间
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class ProtobufTest4 {private AddressBookJava addressBookJava;private AddressBook addressBook;@Setuppublic void init() {addressBookJava = createAddressBookJava(1000);addressBook = createAddressBook(1000);}@Benchmarkpublic AddressBookJava testJSON() {// 转 JSONString jsonString = JSON.toJSONString(addressBookJava);// JSON 转对象return JSON.parseObject(jsonString, AddressBookJava.class);}@Benchmarkpublic AddressBook testProtobuf() throws InvalidProtocolBufferException {// 转 JSONbyte[] addressBookByteArray = addressBook.toByteArray();// JSON 转对象return AddressBook.parseFrom(addressBookByteArray);}public static AddressBook createAddressBook(int personCount) {Builder builder = AddressBook.newBuilder();for (int i = 0; i < personCount; i++) {builder.addPeople(Person.newBuilder().setId(i).setName("www.wdbyte.com").setEmail("xxx@126.com").addPhones(PhoneNumber.newBuilder().setNumber("18333333333").setType(PhoneType.HOME)));}return builder.build();}public static AddressBookJava createAddressBookJava(int personCount) {AddressBookJava addressBookJava = new AddressBookJava();addressBookJava.setPersonJavaList(new ArrayList<>());for (int i = 0; i < personCount; i++) {PersonJava personJava = new PersonJava();personJava.setId(i);personJava.setName("www.wdbyte.com");personJava.setEmail("xxx@126.com");PhoneNumberJava numberJava = new PhoneNumberJava();numberJava.setNumber("18333333333");numberJava.setPhoneTypeJava(PhoneTypeJava.HOME);personJava.setPhones(numberJava);addressBookJava.getPersonJavaList().add(personJava);}return addressBookJava;}
}
JMH 吞吐量测试结果(Score 值越大吞吐量越高,性能越好):
Benchmark Mode Cnt Score Error Units
ProtobufTest3.testJSON thrpt 10 1.877 ± 0.287 ops/ms
ProtobufTest3.testProtobuf thrpt 10 2.813 ± 0.446 ops/ms
JMH 采样时间测试结果(Score 越小,采样时间越小,性能越好):
Benchmark Mode Cnt Score Error Units
ProtobufTest3.testJSON sample 53028 0.565 ± 0.005 ms/op
ProtobufTest3.testProtobuf sample 90413 0.332 ± 0.001 ms/op
从测试结果看,不管是吞吐量测试,还是采样时间测试,Protobuf 都优于 JSON。
为什么高效?
Protobuf 是如何实现这种高效紧凑的数据编码和解码的呢?
首先,Protobuf 使用二进制编码,会提高性能;其次 Protobuf 在将数据转换成二进制时,会对字段和类型重新编码,减少空间占用。它采用 TLV
格式来存储编码后的数据。TLV
也是就是 Tag-Length-Value ,是一种常见的编码方式,因为数据其实都是键值对形式,所以在 TAG
中会存储对应的字段和类型信息,Length
存储内容的长度,Value
存储具体的内容。
还记得上面定义结构体时每个字段都对应一个数字吗?如 =1
,=2
,=3
.
message Person {optional int32 id = 1;optional string name = 2;optional string email = 3;
}
在序列化成二进制时候就是通过这个数字来标记对应的字段的,二进制中只存储这个数字,反序列化时通过这个数字找对应的字段。这也是上面为什么说尽量使用 1-15 范围内的数字,因为一旦超过 15,就需要多一个 bit 位来存储。
那么类型信息呢?比如 int32
怎么标记,因为类型个数有限,所以 Protobuf 规定了每个类型对应的二进制编码,比如 int32
对应二进制 000
,string
对应二进制 010
,这样就可以只用三个比特位存储类型信息。
这里只是举例描述大概思想,具体还有一些变化。
详情可以参考官方文档:https://protobuf.dev/programming-guides/encoding/
其次,Protobuf 还会采用一种变长编码的方式来存储数据。这种编码方式能够保证数据占用的空间最小化,从而减少了数据传输和存储的开销。具体来说,Protobuf 会将整数和浮点数等类型变换成一个或多个字节的形式,其中每个字节都包含了一部分数据信息和一部分标识符信息。这种编码方式可以在数据值比较小的情况下,只使用一个字节来存储数据,以此来提高编码效率。
最后,Protobuf 还可以通过采用压缩算法来减少数据传输的大小。比如 GZIP 算法能够将原始数据压缩成更小的二进制格式,从而在网络传输中能够节省带宽和传输时间。Protobuf 还提供了一些可选的压缩算法,如 zlib 和 snappy,这些算法在不同的场景下能够适应不同的压缩需求。
综上所述,Protobuf 在实现高效编码和解码的过程中,采用了多种优化方式,从而在实际应用中能够有效地提升数据传输和处理的效率。
总结
ProtoBuf 是一种轻量、高效的数据交换格式,它具有以下优点:
- 语言中立,可以支持多种编程语言;
- 数据结构清晰,易于维护和扩展;
- 二进制编码,数据体积小,传输效率高;
- 自动生成代码,开发效率高。
但是,ProtoBuf 也存在以下缺点:
- 学习成本较高,需要掌握其语法规则和使用方法;
- 需要先定义数据结构,然后才能对数据进行序列化和反序列化,增加了一定的开发成本;
- 由于二进制编码,可读性较差,这点不如 JSON 可以直接阅读。
总体来说,Protobuf 适合用于数据传输和存储等场景,能够提高数据传输效率和减少数据体积。但对于需要人类可读的数据,或需要实时修改的数据,或者对数据的传输效率和体积没那么在意的场景,选择更加通用的 JSON 未尝不是一个好的选择。
参考:https://protobuf.dev/overview/
一如既往,文章代码都存放在 Github.com/niumoo/javaNotes.
文章持续更新,可以微信搜一搜「 程序猿阿朗 」或访问「程序猿阿朗博客 」第一时间阅读。本文 Github.com/niumoo/JavaNotes 已经收录,有很多系列文章,欢迎Star。
相关文章:

Protobuf: 高效数据传输的秘密武器
当涉及到网络通信和数据存储时,数据序列化一直都是一个重要的话题;特别是现在很多公司都在推行微服务,数据序列化更是重中之重,通常会选择使用 JSON 作为数据交换格式,且 JSON 已经成为业界的主流。但是 Google 这么大…...

第五十四章 Unity 移动平台输入(下)
本章节我们介绍一个模拟器插件。这种插件比较多,比如EasyTouch,Lean Touch,Joystick Pack等等。EasyTouch是一个使用非常广泛的插件,支持点击,拖拽,遥感等很多常用功能。不过遗憾的是,该插件已经…...

KD305Y带吸收比极化指数兆欧表
一、概述 KD305Y绝缘电阻测试仪对众多的电力设备如:电缆、电机、发电机、变压器、互感器、高压开关、避雷器等要求做一系列的绝缘性能试验,首先是要做绝缘电阻测试。近年来随着电力事业的飞速发展,大容量设备的使用不断增加,用普通的兆欧表无…...

磁盘空间不足怎么办?释放磁盘空间的4种方法
虽然现在硬盘的空间越来越大,但是在这个数据爆炸的时代中,总是会觉得存储空间不够用,一不注意磁盘就满了,那么除了清空回收站、卸载某些程序外,还能怎么释放磁盘空间呢? 方案一:禁用休眠 休眠是…...

ChatGPT调教指北,技巧就是效率!
技巧就是效率 很多人都知道ChatGPT很火很强,几乎无所不能,但跨越了重重门槛之才有机会使用的时候却有些迷茫,一时间不知道如何使用它。如果你就是把他当作一个普通的智能助手来看待,那与小爱同学有什么区别?甚至还差劲…...

Android启动流程(五)——init进程对子进程的监控
init进程会读取rc文件,然后孵化很多其他系统服务进程,为防止子进程死亡后称为僵尸进程,init需要监测子进程是否死亡,如果死亡,则清除子进程资源,并重新拉起进程。 system/core/init/init.cpp InstallSigna…...

Python每日一练:蚂蚁家族(详解集合法)
文章目录 前言一、题目二、代码分析总结 前言 这题挺有意思,感觉评简单难度有点低了,如果正经用无向图来做,代码还是有点长的。首先得建立节点,估计除第一个和最后一个每个节点都是一条线连进,一条线连出的。就可以这…...

图神经网络:在KarateClub数据集上动手实现图神经网络
文章说明: 1)参考资料:PYG官方文档。超链。 2)博主水平不高,如有错误还望批评指正。 3)我在百度网盘上传了这篇文章的jupyter notebook。超链。提取码8888。 文章目录 文献阅读:代码实操: 文献阅读: 参考文…...

ArduPilot之开源代码调试技巧
ArduPilot之开源代码调试技巧 1. 源由2. ArduPilot Code Debugging Part13. ArduPilot Code Debugging Part24. 持续更新中。。。5. 参考资料 1. 源由 对于如何调试和验证ArduPilot,对于新手来说,有的时候反而是入门的一个门槛。 其实这个并不难&#…...

Linux网络基础-2
在之前的网络基础博客中,我们对网络的基本概念进行了一个简单的介绍,那么接下来的网络内容中,我们将对网络通信中的典型协议进行详细解释。 我们根据网络协议中的分层来对典型协议进行注意介绍,不过对于物理层的传输我们不做考究…...

软件测试报告模板
目录 2 1 概述... 3 1.1 测试目的... 3 1.2 测试策略... 3 1.3 测试方法... 3 1.4 计划验收标准... 3 1.5 测试用例... 4...

记一次azkaban调度异常处理
一、背景 预发布环境使用的数据库性能比较低,根据业务测试的需求,需要将数据库更换成 稳定高性能的数据库。更换业务数据库后azkaban定时任务失败 二、数据库服务信息 说明:该部分使用代号来代替,非真实信息 该数据库存储了azka…...

开发一个vue自定义指令的npm库-系列三:使用rollup打包npm库并发布
配置 rollup 使用rollup将 TypeScript 代码转换为 JavaScript,然后进行压缩和输出到目标文件。 项目根目录新建rollup.config.js import typescript from "rollup/plugin-typescript"; import terser from "rollup/plugin-terser"; import de…...

C嘎嘎的运算符重载基础教程以及遵守规则【文末赠书三本】
博主名字:阿玥的小东东 大家一起共进步! 目录 基础概念 优先级和结合性 不会改变用法 在全局范围内重载运算符 小结 本期送书:盼了一年的Core Java最新版卷Ⅱ,终于上市了 基础概念 运算符重载是通过函数重载实现的…...

【MCAL_UART】-1.2-图文详解RS232,RS485和MODBUS的关系
目录 1 UART,RS232和RS485通信拓扑 2 什么是RS232 2.1 RS232标准的演变 2.2 RS232标准讲了哪些 2.2.1 RS232通信的电平 2.2.2 RS232通信的带宽 2.2.3 RS232通信距离 2.2.4 RS232通信的机械接口 3 什么是RS485 3.1 RS485标准的演变 3.2 RS485标准讲了哪些…...

设计模式详解(二)——单例模式
单例模式简介 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,创建型模式是一类最常用的设计模式,在软件开发中应用非常广泛,它提供了一种创建对象的最佳方式。 单例模…...

为什么hooks不能在循环、条件或嵌套函数中调用
hooks不能在循环、条件或嵌套函数中调用 为什么? 带着疑问一起去看源码吧~ function App() {const [num, setNum] useState(0);const [count, setCount] useState(0);const handleClick () > {setNum(num > num 1)setCount(2)}return <p …...

互联网赚钱项目有哪些?目前最火的互联网项目
互联网是一个神奇的行业,大门不出二门不迈,一根网线一台电脑,甚至一台手机就可以赚钱。它给我们创造了前所未有的商业机会,让成千上万有梦想,敢想敢干的人通过互联网获得了巨大的成功!正因为如此࿰…...

队列、栈专题
队列、栈专题 LeetCode 20. 有效的括号解题思路代码实现 LeetCode 921. 使括号有效的最少添加解题思路代码实现 LeetCode 1541. 平衡括号字符串的最少插入次数解题思路代码实现 总结 不要纠结,干就完事了,熟练度很重要!!ÿ…...

TensorFlow vs PyTorch:哪一个更适合您的深度学习项目?
在深度学习领域中,TensorFlow 和 PyTorch 都是非常流行的框架。这两个框架都提供了用于开发神经网络模型的工具和库,但它们在设计和实现上有很大的差异。在本文中,我们将比较 TensorFlow 和 PyTorch,并讨论哪个框架更适合您的深度…...

大项目环境配置
目录 Linux的龙蜥8是什么? OpenGL是什么? 能讲讲qt是什么吗? 我可以把qt技术理解为c工程师的前端开发手段吗? 我其实一直有些不懂大家所说的这个开发框架啥的,这个该如何理解呢 那现在在我看来,框架意…...

Elasticsearch——》正则regexp
推荐链接: 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…...

五面阿里Java岗,从小公司到阿里的面经总结
面试 笔试常见的问题 面试常见的问题下面给的面试题基本都有。 1 手写代码:手写代码一般会考单例、排序、线程、消费者生产者 排序。 2 写SQL很常考察group by、内连接和外连接 2.面试1-5面总结 1)让你自我介绍 2)做两道算法…...

redis(7)
全局ID生成器: 全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足以下特性 唯一性高可用(随时访问随时生成)递增性安全性(不能具有规律性)高性能(生成ID的速度快) 为了增加ID的安全性,我们不会使用redis自增的数值&am…...

互联网从业者高频单词 300个
测试 (Test) 软件 (Software) 用例 (Test Case) 缺陷 (Defect) 提交 (Submit) 回归测试 (Regression Testing) 验收测试 (Acceptance Testing) 单元测试 (Unit Testing) 集成测试 (Integration Testing) 性能测试 (Performance Testing) 负载测试 (load Testing) 压…...

初始化vue中data中的数据
当组件的根元素使用了v-if的时候, 并不会初始化data中的数据 如果想完全销毁该组件并且初始化数据,需要在使用该组件的本身添加v-if 或者是手动初始化该组件中的数据 初始化化数据的一些方法 Object.assign(this.$data, this.$options.data()) this.$data:当前的da…...

神经网络的建立-TensorFlow2.x
要学习深度强化学习,就要学会使用神经网络,建立神经网络可以使用TensorFlow和pytorch,今天先学习以TensorFlow建立网络。 直接上代码 import tensorflow as tf# 定义神经网络模型 model tf.keras.models.Sequential([tf.keras.layers.Dense…...

python基于卷积神经网络实现自定义数据集训练与测试
注意: 如何更改图像尺寸在这篇文章中,修改完之后你就可以把你自己的数据集应用到网络。如果你的训练集与测试集也分别为30和5,并且样本类别也为3类,那么你只需要更改图像标签文件地址以及标签内容(如下面两图所示&…...

跟着LearnOpenGL学习3--四边形绘制
文章目录 一、前言二、元素缓冲对象三、完整代码四、绘制模式 一、前言 通过跟着LearnOpenGL学习2–三角形绘制一文,我们已经知道了怎么配置渲染管线,来绘制三角形; OpenGL主要处理三角形,当我们需要绘制别的图形时,…...

c#笔记-结构
装箱 结构是值类型。值类型不能继承其他类型,也不能被其他类型继承。 所以它的方法都是确定的,没有虚方法需要在运行时进行动态绑定。 值类型没有对象头,方法调用由编译器直接确定。 但是,如果使用引用类型变量(如接…...