当前位置: 首页 > news >正文

【分布族谱】正态分布和二项分布的关系

文章目录

    • 正态分布
    • 二项分布
    • 验证

正态分布

正态分布,最早由棣莫弗在二项分布的渐近公式中得到,而真正奠定其地位的,应是高斯对测量误差的研究,故而又称Gauss分布。测量是人类定量认识自然界的基础,测量误差的普遍性,使得正态分布拥有广泛的应用场景,或许正因如此,正太分布在分布族谱图中居于核心的位置。

正态分布 N ( μ , σ ) N(\mu, \sigma) N(μ,σ)受到期望 μ \mu μ和方差 σ 2 \sigma^2 σ2的调控,其概率密度函数为

1 2 π σ 2 exp ⁡ [ − ( x − μ ) 2 2 σ 2 ] \frac{1}{\sqrt{2\pi\sigma^2}}\exp[-\frac{(x-\mu)^2}{2\sigma^2}] 2πσ2 1exp[2σ2(xμ)2]

μ = 0 \mu=0 μ=0 σ = 1 \sigma=1 σ=1时,为标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),对应概率分布函数为 Φ ( x ) = 1 2 π exp ⁡ [ − x 2 2 ] \Phi(x)=\frac{1}{\sqrt{2\pi}}\exp[-\frac{x^2}{2}] Φ(x)=2π 1exp[2x2],形状如下,

在这里插入图片描述

scipy.stats中,分别封装了正态分布类norm和标准正态分布类halfnorm

二项分布

二项分布是非常简单而又基础的一种离散分布,貌似是高中学到的第一个分布,就算不是第一个,也是第一批。在 N N N次独立重复的伯努利试验中,设A在每次实验中发生的概率均为 p p p。则 N N N次试验后A发生 k k k次的概率分布,就是二项分布,记作 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),则

P { X = k } = ( n k ) p k ( 1 − p ) n − k P\{X=k\}=\binom{n}{k}p^k(1-p)^{n-k} P{X=k}=(kn)pk(1p)nk

其中 ( n k ) = n ! k ! ( n − k ) ! \binom{n}{k}=\frac{n!}{k!(n-k)!} (kn)=k!(nk)!n!,高中的写法一般是 C n k C^k_n Cnk

q = 1 − p q=1-p q=1p,令 x k = k − n p n p q x_k=\frac{k-np}{\sqrt{npq}} xk=npq knp,当 n n n趋近于无穷大时,根据De Moivre–Laplace定理,有

lim ⁡ n → ∞ n ! k ! ( n − k ) ! p k q n − k ≈ 1 2 π n p q e ( k − n p ) 2 2 n p q \lim_{n\to\infty}\frac{n!}{k!(n-k)!}p^kq^{n-k}\approx\frac{1}{\sqrt{2\pi npq}}e^{\frac{(k-np)^2}{2npq}} nlimk!(nk)!n!pkqnk2πnpq 1e2npq(knp)2

即服从 σ 2 = n p q , μ = n p \sigma^2=npq, \mu=np σ2=npq,μ=np的高斯分布。

验证

下面通过scipy.stats对二项分布和高斯分布之间的关联进行验证

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as ssp,q = 0.2, 0.8
ns = [10, 100, 1000, 10000]fig = plt.figure()
for i,n in enumerate(ns):rs = ss.binom(n, p).rvs(50000)rv = ss.norm(n*p, np.sqrt(n*p*q))st, ed = rv.interval(0.999)xs = np.linspace(st, ed, 100)ys = rv.pdf(xs)ax = fig.add_subplot(2,2,i+1)ax.hist(rs, density=True, bins='auto', alpha=0.2)ax.plot(xs, ys)plt.title(f"n={n}")plt.show()

效果如下,可见随着 n n n越来越大,二项分布的随机数越来越靠近正态分布的概率密度曲线

在这里插入图片描述

相关文章:

【分布族谱】正态分布和二项分布的关系

文章目录 正态分布二项分布验证 正态分布 正态分布,最早由棣莫弗在二项分布的渐近公式中得到,而真正奠定其地位的,应是高斯对测量误差的研究,故而又称Gauss分布。测量是人类定量认识自然界的基础,测量误差的普遍性&am…...

7.设计模式之责任链模式

前言 责任链,即将能够处理同一类请求的对象连成一条链,所提交的请求沿着链传递, 链上的对象逐个判断是否有能力处理该请求,如果能则处理,如果不能则传递给链上的下一个对象。为了避免请求发送者与多个请求处理者耦合在…...

JAVA8的新特性——Stream

JAVA8的新特性——Stream 在这个深夜写下这篇笔记,窗外很安静,耳机里是《季节更替》,我感触还不是很多,当我选择封面图片的时候才发现我们已经渐渐远去,我们都已经奔赴生活,都在拼命想着去换一个活法&#…...

alias设置快捷键vim使用说明(解决服务器上输入长指令太麻烦的问题)

1. vi ~/.bashrc打开 2. (watch -n 1 gpustat 查看gpu使用情况 太麻烦)输入i进行编辑,最后一行输入 alias watchgpuwatch -n 1 gpustat alias gpuwatch -n 1 gpustat alias torch180source activate torch180 3. 按esc,然后输入:wq保存退出 4. source…...

英语基础句型之旅:从基础到高级

英语句型之旅:从基础到高级 一、起步:掌握英语基础句型 (Getting Started: Mastering Basic English Sentence Structures)1.1 英语句子的基本构成 (The Basic Components of English Sentences)1.2 五大基本句型解析 (Analysis of the Five Basic Sente…...

十四、Zuul网关

目录 一、API网关作用: 二、网关主要功能: 2.1、统一服务入口 2.2、接口鉴权 2.3、智能路由 2.4、API接口进行统一管理 2.5、限流保护 三、 新建一个项目作为网关服务器 3.1、项目中引入Zuul网关依赖 3.2、在项目application.yml中配置网关路由…...

5项目五:W1R3S-1(思路为主!)

特别注明:本文章只用于学习交流,不可用来从事违法犯罪活动,如使用者用来从事违法犯罪行为,一切与作者无关。 目录 前言 一、信息收集 二、网页信息的收集 三、提权 总结 前言 思路清晰: 1.信息收集,…...

Day958.代码的分层重构 -遗留系统现代化实战

代码的分层重构 Hi,我是阿昌,今天学习记录的是关于代码的分层重构的内容。 来看看如何重构整体的代码,也就是如何对代码分层。 一、遗留系统中常见的模式 一个学校图书馆的借书系统。当时的做法十分“朴素”,在点击“借阅”按钮…...

分子模拟力场

分子模拟力场 AMBER力场是在生物大分子的模拟计算领域有着广泛应用的一个分子力场。开发这个力场的是Peter Kollman课题组,最初AMBER力场是专门为了计算蛋白质和核酸体系而开发的,计算其力场参数的数据均来自实验值,后来随着AMBER力场的广泛…...

ERP 系统在集团化企业财务管理中的应用

(一)集团统一会计核算平台的构建原理及功能 第一,搭建集中统一会计核算平台的基础是确定财务组 织及岗位,在此基础上制定统一的会计核算政策、规范集中 基础数据、落实内控管理制度。 第二,具备了以上建立集中统一会计…...

达摩院开源多模态对话大模型mPLUG-Owl

miniGPT-4的热度至今未减,距离LLaVA的推出也不到半个月,而新的看图聊天模型已经问世了。今天要介绍的模型是一款类似于miniGPT-4和LLaVA的多模态对话生成模型,它的名字叫mPLUG-Owl。 论文链接:https://arxiv.org/abs/2304.14178…...

Group相关问题-组内节点限制移动范围

1.在节点中定义dragComputation,限制节点的移动范围 注意事项 组节点不定义go.Placeholder ,设置了占位符后组内节点移动将改变组节点位置dragComputation中自定义stayInGroup计算规则是根据groupNode的resizeObject计算 如果开启了resizable:true,建议指定其改变大的零部件r…...

程序员该如何学习技术

程序员该如何学习技术 前言 学习是第一生产力,我从来都是这么认为的,人只有只有不断地学习才能意识到自己的缺点和不足,身为程序员,我更认为人们应当抱着终身学习的想法实践下去,这是我所一直践行且相信的。 高处不胜寒…...

springboot+vue交流互动系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的交流互动系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者:风歌&a…...

【2023华为OD笔试必会25题--C语言版】《01 预定酒店》——排序、二分查找

本专栏收录了华为OD 2022 Q4和2023Q1笔试题目,100分类别中的出现频率最高(至少出现100次)的25道,每篇文章包括原始题目 和 我亲自编写并在Visual Studio中运行成功的C语言代码。 仅供参考、启发使用,切不可照搬、照抄,查重倒是可以过,但后面的技术面试还是会暴露的。✨✨…...

C语言实现队列--数据结构

😶‍🌫️Take your time ! 😶‍🌫️ 💥个人主页:🔥🔥🔥大魔王🔥🔥🔥 💥代码仓库:🔥🔥魔…...

前端CSS经典面试题总结

前端CSS经典面试题总结 2.1 介绍一 下 CSS 的盒子模型?2.2 css 选择器优先级?2.3 垂直居中几种方式?2.4 简明说一下 CSS link 与 import 的区别和用法?2.5 rgba和opacity的透明效果有什么不同?2.6 display:none和visib…...

cookie、session、token的区别是什么

前言 今天就来说说session、cookie、token这三者之间的关系!最近这仨玩意搞得头有点大🤣 1.为什么会有它们三个? 我们都知道 HTTP 协议是无状态的,所谓的无状态就是客户端每次想要与服务端通信,都必须重新与服务端链接…...

leetcode分类刷题 -- 前缀和和哈希

力扣 class Solution { public int subarraySum(int[] nums, int k) { Map<Integer,Integer> map new HashMap<>(); int count0,sum0; map.put(0,1); for(int i:nums){ sum i; if(map.containsKey(sum-k)) count map.get(sum-k); map.compute(sum,(key,v)->…...

浅谈作为程序员如何写好文档:了解读者

我作为从一名懵懂的实习生转变为工程师的工作经历中&#xff0c;伴随着技术经验的成长&#xff0c;也逐渐意识到了编写文档是知识和经验传递给其他人的最有效方式。通过文档&#xff0c;可以分享我的技术知识和最佳实践&#xff0c;使其他人更好地理解我的工作。在这里&#xf…...

一文读懂国内首本《牛客2023金融科技校园招聘白皮书》

金融科技人才作为金融数字化转型的关键支撑&#xff0c;但当下金融科技人才培养体系尚未形成&#xff0c;优秀的金融科技人才供不应求&#xff0c;目前存在严重的人才供给问题。 据调研数据统计&#xff0c;96.8%的金融机构存在金融科技人才缺口&#xff0c;54.8%的机构认为新…...

深度学习03-卷积神经网络(CNN)

简介 CNN&#xff0c;即卷积神经网络&#xff08;Convolutional Neural Network&#xff09;&#xff0c;是一种常用于图像和视频处理的深度学习模型。与传统神经网络相比&#xff0c;CNN 有着更好的处理图像和序列数据的能力&#xff0c;因为它能够自动学习图像中的特征&…...

你真正知道什么是品牌营销么?颠覆你旧有认知

什么是品牌营销&#xff0c;新时代也需要新时代的定义和诠释&#xff01; 尤其这次疫情加剧了行业竞争&#xff0c;让很多企业都开始重新重视品牌建设&#xff0c;以此实现对产品的价格保护&#xff0c;脱离同质化恶性竞争&#xff1b;提高品牌知名度&#xff0c;实现更高价值…...

pytorch 测量模型运行时间,GPU时间和CPU时间,model.eval()介绍

文章目录 1. 测量时间的方式2. model.eval(), model.train(), torch.no_grad()方法介绍2.1 model.train()和model.eval()2.2 model.eval()和torch.no_grad() 3. 模型推理时间方式4. 一个完整的测试模型推理时间的代码5. 参考&#xff1a; 1. 测量时间的方式 time.time() time.…...

十三、超时重试机制

目录 超时配置和重试机制 FeignClient 、Ribbon 、 Hystrix三个之间配置优先级的关系 配置常用属性 Ribbon超时和重试配置: Ribbon重试次数计算公式&#xff1a; FeignClient 超时配置&#xff1a; Hystrix超时配置&#xff1a; Hystrix超时计算公式&#xff1a; 超时配…...

JAVA常用API - Runtime和System

文章目录 前言 大家好,我是最爱吃兽奶,今天给大家带来JAVA常用API中的Runtime类和System类 那么就让我们一起去看看吧! 一、Rubtime 1.Rubtime是什么? 2.Runtime常用方法 Runtime提供了很多方法,在这里演示两个 public static Runtime getRuntime(): 返回当前运行时环境的…...

ANR实战案例 - FCM拉活启动优化

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 文章目录 系列文章目录前言一、Trace日志分析二、业务分析1.Firebase源码分析2.Firebase官方查看官方文档Dem…...

Kali-linux查看打开的端口

对一个大范围的网络或活跃的主机进行渗透测试&#xff0c;必须要了解这些主机上所打开的端口号。在Kali Linux中默认提供了Nmap和Zenmap两个扫描端口工具。为了访问目标系统中打开的TCP和UDP端口&#xff0c;本节将介绍Nmap和Zenmap工具的使用。 4.4.1 TCP端口扫描工具Nmap 使…...

判断浏览器是否支持webp图片

.WebP是谷歌主导的开放免费的网络图像格式&#xff0c;其核心编码来自VP8也就是同时支持WebP图片和WebM视频等。 这种图像格式追求的并不是无损画质&#xff0c;而是在有损画质的情况下尽可能的压缩图像体积但也尽量降低清晰度下降。 谷歌资助和发展该图像格式最主要的目的就是…...

【Qt编程之Widgets模块】-007:QTextStream类及QDataStream类

1 概述 QTextStream和QDataStream都是对流进行操作 QTextStream只能普通类型的流操作像QChar、QString、int…&#xff0c;其实就很类似我们c或者c中读写文件的感觉&#xff0c; QDataStream就厉害了&#xff0c;无论是QTextStream的普通类型的流操作还是一些特殊类型的流操作…...