随机变量X,分布函数X~F(x)的理解。
1.随机变量X
1.通常认知的"x"与随机变量X
我们通常意义上的 x 是自变量,y = f(x) 中的自变量。
但是 X 更多意义是 对应法则 " f " ,X完整写法是 X(ω) ω ∈ Ω。
X这个对应法则,可以将样本点映射到实数轴上。
那么X这个对应法则到底是什么,又怎么映射的呢?
2.两个实例解释 X 如何个映射法。
实例1:投一枚硬币,出现正面和反面的概率近似1/2.
实例2:明天下雨或者晴天的可能均为1/2.
现在我们定义为(实质上反应到数学表达上,即用X映射):
很明显,事件 “正 反 雨 晴”是样本点 ω ,这些事件反应到数轴上即为:“0 1” ,“ 1 0”.
而表格可知,这两个不同的场景都遵循一个规则:
都抽象成了 X(ω) 这种规则,即 " X(ω) "将现实中的事件,变成了抽象的数字,方便进行数学处理,如:我们可以引入 微积分 这种强大的工具。
也可以说:随机变量 X 将一个随机不确定的过程,带入了又具体表示的数学世界,将“凌乱的概率” 变的有迹可循(如:我们可以用F(x) 表示X的概率分布)。
3.回过头看随机变量 X 的定义
设随机试验 E 的样本空间 Ω = { ω } ,如果对于每一个 事件ω ∈ Ω,都有唯一的实数 x ∈ R 与之对应。并且 对于 ∀x ∈ R ,有 {ω | X <= x, ω ∈ Ω}是随机事件,则称定义在 Ω 上的实值单值函数 X(ω) 为随机变量,记 X.
定义的意思是:随机变量是:“定义在样本空间 Ω 上,而取决于实数轴的函数”叫随机变量。
2.X 的分布函数 F(X) 的理解。
1.定义
设 X 是一个随机变量,称函数 F(x) = p { X<= x } (x ∈ R), 为随机变量 X 的分布函数,或称 X 服从F(X) 分布,记 X ~ F(x)。
2.解析定义
①X 的分布函数
分布,即概率。“X的分布函数",又可以说 “X的概率函数”。
通常有:幂函数,指数函数,三角函数。我们发现“幂 指数 三角”都反应了这种函数的规则 “f” (f也可以看作一个过程)。类比,”X的概率函数“是否反应了某种规则呢?
当然,“X的概率函数”也反应了一种规则。即 概率 。之所以我们很难理解 F(x) 是因为它的对应法则不符合我们通常的认知。
什么什么?概率也能是规则?当然可以对应法则(映射)是一个过程,那么 求 概率为何不能是一个过程呢?
重点:综上,那么 ”X的分布函数 F(x) = p{X<=x} " 即将 “{X<=x}” 这一坨东西,经过“P”求概率的过程,最终映射成了F(x), 故F(x)就是概率.
那么我们接下来的疑问就是, “{X <= x}”这一坨了,它是个啥?凭啥它就可以求概率了?
它还真可以求,因为"{X <= x}"表示的是一个或多个 “样本点” 或 “事件” 。事件当然可以求概率,为啥它就表示样本点了呢?
重点:由上对 X 的理解,X是将样本点映射到 数轴 上的一种法则,记X(ω) ,ω ∈ Ω
则 X 与 “x” (数轴上的点) 关系为 x = X(ω)。现在我们给出 x 的范围,即 " {X <= x} "是不是反解的结果就是样本点 ω 。
至此,我们已经完整知晓了 “x” 是怎样求出概率的,是通过 随机变量 X ,反解出 ω ,再通过 p 这个过程求出的 概率 F(x)。
而分布函数 F(x) 的对应法则 “F” 正是反应了这一过程,也因此,由于”X“ 规则的不同,导致 F(x) 规则的不同 常见有:
②F(x) = p { X<= x }
F(x) = p { X<= x },求的是概率,由 x 经过两次映射,一次是 逆映射 通过X法则 反解出 样本点ω ,再通过一次正映射 p{ } 求出事件概率,两次映射规则,共同构成从实数轴x 到 现实具体事件概率 的 "F"法则。
注:这里并不关心 P{ } 如何映射的 以及 X 的规则又是个啥,我们只关心 F(x) 到底是个啥,到底干了啥,咋来的,为什么要来就可以了。
③ (x ∈ R)
因为 x 是数轴上的取值,当然是R(由上可知)
3.为啥F(x) 不叫 x 的分布函数,叫 X 的分布函数
①可能分布二字对于 事件来说 更合适些,x还没有经过 X 转换成 ω 。
②可能这样说不够形象,明确。
3.F(X) 的充要条件
1.F(x)的充要条件 <=> ①②③
①F(x)是不减函数
②F(x)是x0的右连续函数,x0 ∈ R。
注:考研大纲明确规定,要求分布函数F(x)定义是F(x) = p{X <= x}
③F(-∞) = 0,F(+∞) = 1
F(-∞) = 0 , 一个事件不包含
F(+∞) = 1,包含全部事件。
4.经典例题
明天写
相关文章:

随机变量X,分布函数X~F(x)的理解。
1.随机变量X 1.通常认知的"x"与随机变量X 我们通常意义上的 x 是自变量,y f(x) 中的自变量。 但是 X 更多意义是 对应法则 " f " ,X完整写法是 X(ω) ω ∈ Ω。 X这个对应法则,可以将样本点映射到实数轴上。 那么X这…...

11.构造器的查询.分块.聚合
学习要点: 1.构造器查询 2.分块.聚合 本节课我们来开始学习数据库的构造器查询以及分块和聚合查询。 一.构造器查询 1. table()方法引入相应的表,get()方法可以查询当前表的所有数据; //获取全部结果 $users DB::table(users)-&g…...

微服务保护——Sentinel
初识Sentinel 雪崩问题 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。 解决雪崩问题的常见方式有四种: 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待舱壁…...

MySQL面试整理
https://houchen-study.oss-cn-hangzhou.aliyuncs.com/%E9%9D%A2%E8%AF%95/MySQL/MySQL%E9%9D%A2%E8%AF%95%E5%A4%A7%E5%85%A8%281%29.pdf 数据库基础知识 为什么要使用数据库? 什么是MySQL? 数据库的三大范式是什么? MySQL有关权限的表…...

Vscode C++环境配置
多文件编译 打开设置搜索coderunner 找到Executor Map 加入-I目录名 目录名/*.cpp 调试 点击调试以后会产生tasks.json文件,加入链接文件和库文件...

matlab小波去噪
本文将为您介绍如何利用MATLAB进行小波去噪处理,并应用于实际数据。小波去噪是一种通过对数据进行小波分解和重构的方法,有效地去除信号中的噪声,提高信号质量。该方法不仅广泛应用于信号处理、图像处理等领域,在实际生产和科研中…...

为什么要采用全网营销策略?全网营销有何优势?
现在市场上有很多全网营销公司,其实很多企业的经理人疑惑全网营销是要干什么?这些公司能干什么?这里小马识途营销顾问给大家做一个整体的解读。 全网营销,概括地说就是在整个互联网,利用各类互联网平台和工具对产品和服…...

prometheus实战之四:alertmanager的部署和配置
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第四篇,在《prometheus实战之三:告警规则》中曾经提到过,整个告警功能分为规则和…...

【Python】glob 包的介绍和使用
glob 是 Python 标准库中的一个模块,它提供了一种查找符合特定模式的路径名的方法,类似于命令行中的 glob 命令。glob 模块用于读取指定路径下的所有符合特定规律的文件名,非常适合用于读取文件夹中的文件列表和操作符合特定规律文件列表。 …...

剑指offer(C++)-JZ48:最长不含重复字符的子字符串(算法-动态规划)
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。 数据范围…...

两阶段最小二乘法
两阶段最小二乘法 文章目录 两阶段最小二乘法[toc]1、ivreg包介绍2 、R语言实现 1、ivreg包介绍 R语言计量包ivreg用以解决线性回归模型的内生性问题。 描述:工具变量估计的线性模型通过两阶段最小二乘(2SLS) 回归或通过稳健回归M估计(2SM)或MM估计(2SMM)。主要的…...

ArcMap创建格网统计图
目录 前言 一、人口数据获取 来源一:中科院地理所公开数据集 来源二:WorldPop数据集 二、人口格网统计步骤 1.创建渔网 2.人口数据处理 2.1 栅格转点 2.2 空间插值——处理人口缺失数据 2.3 空间连接——渔网人口统计 总结 前言 在科研中&am…...
[VAE] Auto-Encoding Variational Bayes
直接看paper看得云里雾里,李沐视频一语道破天机(建议从30min左右开始看GAN到Diffusion的串讲)。VAE的核心思路就是下面: 做生成,其实就是从随机向量(z)到目标图像(x)的过…...

《程序员面试金典(第6版)》面试题 16.19. 水域大小(深度优先搜索,类似棋盘类问题,八皇后的简化版本,C++)
题目描述 你有一个用于表示一片土地的整数矩阵land,该矩阵中每个点的值代表对应地点的海拔高度。若值为0则表示水域。由垂直、水平或对角连接的水域为池塘。池塘的大小是指相连接的水域的个数。编写一个方法来计算矩阵中所有池塘的大小,返回值需要从小到…...

Spring 注解之@RestController与@Controller的区别
目录 1:介绍 2:区别 3:总体来说 4:社区地址 1:介绍 RestController 和 Controller 是 Spring MVC 中常用的两个注解,它们都可以用于定义一个控制器类。 2:区别 返回值类型不同:…...

Java中的泛型是什么?如何使用泛型
Java中的泛型是指在定义类、接口和方法时使用类型参数,以使得这些类、接口和方法可以操作多种类型的数据,从而提高代码的重用性和安全性。Java的泛型机制是从JDK5开始引入的,它使得Java程序员能够编写更加通用和类型安全的代码。 什么是泛型…...

【飞行棋】多人游戏-微信小程序开发流程详解
可曾记得小时候玩过的飞行棋游戏,是90后的都有玩过吧,现在重温一下,这是一个可以二到四个人参与的游戏,通过投骰子走棋,一开始靠运气,后面还靠自己选择,谁抢占先机才能赢,还可以和小…...

力扣 146. LRU 缓存
一、题目描述 请你设计并实现一个满足LRU(最近最少使用)缓存约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以正整数作为容量 capacity 初始化LRU缓存。int get(int key) 如果关键字 key 存在于缓存中,则返回关键…...

关于Oracle SCN的最大阈值
SCN每秒增长的速度跟Oracle的版本有关,在Oracle 11.2.0.2之前是每秒允许最大增长16384,在Oracle 11.2.0.2之后是默认每秒允许增长32768,这个值跟新增的隐含参数_max_reasonable_scn_rate有关,如下所示: NAME …...

Linux多路转接之poll
文章目录 一、poll的认识二、编写poll方案服务器三、poll方案多路转接的总结 一、poll的认识 多路转接技术是在不断更新进步的,一开始多路转接采用的是select方案,但是select方案存在的缺点比较多,所以在此基础上改进,产生了poll…...

Webpack打包流程
轻松了解Webpack 打包流程 Webpack是一个现代的JavaScript应用程序的静态模块打包器。它将多个JavaScript文件打包成一个或多个静态资源文件,以便在浏览器中加载。Webpack将应用程序视为一个依赖项图,其中包括应用程序的所有模块,然后通过该…...

React事件委托
React 事件委托(Event Delegation)是一种优化事件处理的技术,它通过将事件监听器添加到父级元素(而不是子元素)来实现。当事件触发时,事件会向上冒泡到父元素,然后在父元素上调用事件处理函数。…...

Notion——构建个人知识库
前言 使用Notion快三年了,它All in one的理念在使用以后确实深有体会,一直想找一个契机将这个软件分享给大家,这款笔记软件在网上已经有很多的教程了,所以在这里我主要想分享框架方面的内容给大家,特别对于学生党、研究…...

ModuleNotFoundError: No module named ‘Multiscaledeformableattention‘
在实现DINO Detection方法时,我们可能会遇到以上问题。因为在DeformableAttention模块,为了加速,需要自己去编译这个模块。 如果你的环境变量中能够找到cuda路径,使用正确的torch版本和cuda版本的话,这个问题很容易解…...

【数据结构】链表(C语言实现)
创作不易,本篇文章如果帮助到了你,还请点赞 关注支持一下♡>𖥦<)!! 主页专栏有更多知识,如有疑问欢迎大家指正讨论,共同进步! 🔥c语言系列专栏:c语言之路重点知识整合 &#x…...

【2023程序员必看】大数据行业分析
1、政策重点扶持,市场前景广阔 2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点。 2015年9月,国务院发布《促进大数据发展的行动纲要》,大数据正式上升至国家战略层面,十九大报告提…...

通达信SCTR强势股选股公式,根据六个技术指标打分
SCTR指标(StockCharts Technical Rank)的思路来源于著名技术分析师约翰墨菲,该指标根据长、中、短三个周期的六个关键技术指标对股票进行打分,根据得分对一组股票进行排名,从而可以识别出强势股。 与其他技术指标一样,SCTR的设计…...

SpringBoot+Token+Redis+Lua+自动续签极简分布式锁Token登录方案
前言 用SpringBoot做一个项目,都要写登录注册之类的方案 使用Cookie或Session的话,它是有状态的,不符合现代的技术 使用Security或者Shiro框架实现起来比较复杂,一般项目无需用那么复杂 使用JWT它虽然是无状态的,也可…...

多模态:MiniGPT-4
多模态:MiniGPT-4 IntroductionMethodlimitation参考 Introduction GPT-4具有很好的多模态能力,但是不开源。大模型最近发展的也十分迅速,大模型的涌现能力可以很好的迁移到各类任务,于是作者猜想这种能力可不可以应用到多模态模…...

5年时间里,自动化测试于我带来的意义,希望你也能早点知道
摘要:在我有限的软件测试经历里,曾有一段专职的自动化测试经历。 接触自动化 那时第一次上手自动化测试,团队里用的是Python,接口自动化测试的框架是requestsExcelJenkins,APP自动化测试的框架是Appium。 整个公司当…...