python简单解析打印onnx模型信息
当我们加载了一个
ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息,生产者信息和一个GraphProto。在GraphProto里面又包含了四个repeated数组,它们分别是node(NodeProto类型),input(ValueInfoProto类型),output(ValueInfoProto类型)和initializer(TensorProto类型),其中node中存放了模型中所有的计算节点,input存放了模型的输入节点,output存放了模型中所有的输出节点,initializer存放了模型的所有权重参数。
这里用python,将onnx中包含的有用的信息打印出来,进行一个直观可视化。
整体流程:
- 解析graph input
- 解析graph output
- 解析graph initializer,模型的所有权重参数
- 解析graph node,打印op信息,输入输出,得到整个计算的graph
import onnx
import numpy as np
import logging
logging.basicConfig(level=logging.INFO)def onnx_datatype_to_npType(data_type):if data_type == 1:return np.float32else:raise TypeError("don't support data type")def parser_initializer(initializer):name = initializer.namelogging.info(f"initializer name: {name}")dims = initializer.dimsshape = [x for x in dims]logging.info(f"initializer with shape:{shape}")dtype = initializer.data_typelogging.info(f"initializer with type: {onnx_datatype_to_npType(dtype)} ")# print tenth bufferweights = np.frombuffer(initializer.raw_data, dtype=onnx_datatype_to_npType(dtype))logging.info(f"initializer first 10 wights:{weights[:10]}")def parser_tensor(tensor, use='normal'):name = tensor.namelogging.info(f"{use} tensor name: {name}")data_type = tensor.type.tensor_type.elem_typelogging.info(f"{use} tensor data type: {data_type}")dims = tensor.type.tensor_type.shape.dimshape = []for i, dim in enumerate(dims):shape.append(dim.dim_value)logging.info(f"{use} tensor with shape:{shape} ")def parser_node(node):def attri_value(attri):if attri.type == 1:return attri.ielif attri.type == 7:return list(attri.ints)name = node.namelogging.info(f"node name:{name}")opType = node.op_typelogging.info(f"node op type:{opType}")inputs = list(node.input)logging.info(f"node with {len(inputs)} inputs:{inputs}")outputs = list(node.output)logging.info(f"node with {len(outputs)} outputs:{outputs}")attributes = node.attributefor attri in attributes:name = attri.namevalue = attri_value(attri)logging.info(f"{name} with value:{value}")def parser_info(onnx_model):ir_version = onnx_model.ir_versionproducer_name = onnx_model.producer_nameproducer_version = onnx_model.producer_versionfor info in [ir_version, producer_name, producer_version]:logging.info("onnx model with info:{}".format(info))def parser_inputs(onnx_graph):inputs = onnx_graph.inputfor input in inputs:parser_tensor(input, 'input')def parser_outputs(onnx_graph):outputs = onnx_graph.outputfor output in outputs:parser_tensor(output, 'output')def parser_graph_initializers(onnx_graph):initializers = onnx_graph.initializerfor initializer in initializers:parser_initializer(initializer)def parser_graph_nodes(onnx_graph):nodes = onnx_graph.nodefor node in nodes:parser_node(node)t = 1def onnx_parser():model_path = 'D:/project/public/yolov5-5.0/yolov5s-sim.onnx'model = onnx.load(model_path)# 0.parser_info(model)graph = model.graph# 1.parser_inputs(graph)# 2. parser_outputs(graph)# 3.parser_graph_initializers(graph)# 4. parser_graph_nodes(graph)if __name__ == '__main__':onnx_parser()
INFO:root:onnx model with info:7
INFO:root:onnx model with info:pytorch
INFO:root:onnx model with info:1.10
INFO:root:input tensor name: images
INFO:root:input tensor data type: 1
INFO:root:input tensor with shape:[1, 3, 640, 640]
INFO:root:output tensor name: output
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 80, 80, 85]
INFO:root:output tensor name: 405
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 40, 40, 85]
INFO:root:output tensor name: 419
INFO:root:output tensor data type: 1
INFO:root:output tensor with shape:[1, 3, 20, 20, 85]
INFO:root:initializer name: model.0.conv.conv.weight
INFO:root:initializer with shape:[32, 12, 3, 3]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.2730072 -1.4410826 -1.187087 -0.31312177 -0.94754034 -0.7239634 0.4315643 2.0547783 1.5080036 0.04422583]
INFO:root:initializer name: model.0.conv.conv.bias
INFO:root:initializer with shape:[32]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 1.4819448 -0.9827409 -0.7623507 -0.503065 -0.1677513 3.1156974 1.4849529 0.15412715 -0.4954783 2.8073668 ]
INFO:root:initializer name: model.1.conv.weight
INFO:root:initializer with shape:[64, 32, 3, 3]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.0130239 -0.00788062 0.0033419 -0.08140857 -0.1592819 -0.10095055 -0.01685373 -0.00378994 -0.01589627 0.01994706]
INFO:root:initializer name: model.1.conv.bias
INFO:root:initializer with shape:[64]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 2.9810083 1.6583345 2.4536395 4.068509 -0.03429741 -0.2963567 1.7936802 0.32334638 2.3112206 0.9088864 ]
INFO:root:initializer name: model.2.cv1.conv.weight
INFO:root:initializer with shape:[32, 64, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.00402472 -0.02254777 0.01670638 0.07000323 -0.01463853 -0.01208 -0.00047498 -0.01327164 0.02764146 0.03544556]
...
...
...
INFO:root:initializer name: model.23.cv2.conv.bias
INFO:root:initializer with shape:[256]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.33130765 0.50842535 0.04622685 0.27884385 0.35381323 -0.05325952 0.18430158 0.16491716 -0.4574555 0.21860392]
INFO:root:initializer name: model.23.cv3.conv.weight
INFO:root:initializer with shape:[512, 512, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.15170689 -0.05846716 -0.03708049 -0.00515915 0.04973555 -0.01793442 0.26971823 -0.08900855 -0.08623905 -0.01718434]
INFO:root:initializer name: model.23.cv3.conv.bias
INFO:root:initializer with shape:[512]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.07636432 -0.14711903 -0.1693097 1.2009852 0.00255883 1.4637253-0.29597348 2.088275 0.5806205 0.49393153]
INFO:root:initializer name: model.23.m.0.cv1.conv.weight
INFO:root:initializer with shape:[256, 256, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 1.8370461e-01 -3.6310073e-02 2.6413003e-02 -3.4686580e-02-4.4441203e-04 3.3812389e-02 -3.7558913e-02 -9.6223257e-02-5.3294320e-02 -5.8845425e-01]
INFO:root:initializer name: model.23.m.0.cv1.conv.bias
INFO:root:initializer with shape:[256]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.4050864 -0.03902826 0.31003702
INFO:root:initializer name: model.24.m.0.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[ 0.13708496 0.06561279 0.81152344 0.62353516 -4.1992188 -1.0546875 -5.2734375 -3.4414062 -5.5234375 -5.71875 ]
INFO:root:initializer name: model.24.m.1.weight
INFO:root:initializer with shape:[255, 256, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.00010455 -0.00139713 0.00134754 0.01174927 -0.00017703 -0.00750351-0.00029159 -0.00182247 -0.02702332 0.04980469]
INFO:root:initializer name: model.24.m.1.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-0.05148315 -0.05493164 0.6333008 0.05197144 -2.625 -1.3398438 -5.7851562 -4.765625 -5.7929688 -6.2773438 ]
INFO:root:initializer name: model.24.m.2.weight
INFO:root:initializer with shape:[255, 512, 1, 1]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-2.5444031e-03 -1.1138916e-01 9.1195107e-06 1.0973215e-04-1.5907288e-03 -3.3130646e-03 2.6941299e-04 -9.5486641e-051.4615059e-04 -7.8857422e-02]
INFO:root:initializer name: model.24.m.2.bias
INFO:root:initializer with shape:[255]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[-1.6265869e-02 -1.9702911e-03 -6.9091797e-02 1.9494629e-01-2.0878906e+00 -1.6210938e+00 -6.5625000e+00 -5.4531250e+00-6.3437500e+00 -6.7070312e+00]
INFO:root:initializer name: 420
INFO:root:initializer with shape:[4]
INFO:root:initializer with type: <class 'numpy.float32'>
INFO:root:initializer first 10 wights:[1. 1. 2. 2.]
相关文章:
python简单解析打印onnx模型信息
当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息,生产者信息和一个GraphProto。在GraphProto里面又包含了四个repeated数组,它们分别是node(NodeProto类型),input(ValueInfoProto类型)&a…...
UE4 编写着色器以及各种宏的理解
参考链接:如何为 UE4 添加全局着色器(Global Shaders) - Unreal Enginehttps://docs.unrealengine.com/5.1/zh-CN/adding-global-shaders-to-unreal-engine/如何为 UE4 添加全局着色器(Global Shaders) - Unreal Engin…...
小笔记:Python 使用字符串调用函数
小笔记:Python中如何使用字符串调用函数/方法?jcLee95:https://blog.csdn.net/qq_28550263?spm1001.2101.3001.5343 本文地址:https://blog.csdn.net/qq_28550263/article/details/111874476 邮箱 :291148484163.co…...
红黑树的原理+实现
文章目录红黑树定义性质红黑树的插入动态效果演示代码测试红黑树红黑树 定义 红黑树是一个近似平衡的搜索树,关于近似平衡主要体现在最长路径小于最短路径的两倍(我认为这是红黑树核心原则),为了达到这个原则,红黑树所…...
用于非线性时间序列预测的稀疏局部线性和邻域嵌入(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
使用 Vue3 重构 Vue2 项目
目录前言:一、项目整体效果展示二、项目下载使用方法三、为什么要重构项目四、重构的流程五、步骤中的 bug 以及解决方式六、未解决的问题总结:前言: 2020年9月18日,vue3正式版发布了,前几天学习完成后,我决…...
Hive学习——单机版Hive的安装
目录 一、基本概念 (一)什么是Hive (二)优势和特点 (三)Hive元数据管理 二、Hive环境搭建 1.自动安装脚本 2./opt/soft/hive312/conf目录下创建hive配置文件hive-site.xml 3.拷贝一个jar包到hive下面的lib目录下 4.删除hive的guava,拷贝hadoop下的guava 5…...
uprobe 实战
观测数据源 目前按照我的理解,和trace相关的常用数据源–探针 大致分为四类。 内核 Trace point kprobe 用户程序 USDT uprobe 在用户程序中,USDT是所谓的静态Tracepoint。和内核代码中的Trace point类似。实现方式是在代码开发时,使用USDT…...
华为OD机试 - 求最大数字(Python)| 真题+思路+考点+代码+岗位
求最大数字 题目 给定一个由纯数字组成以字符串表示的数值,现要求字符串中的每个数字最多只能出现2次,超过的需要进行删除;删除某个重复的数字后,其它数字相对位置保持不变。 如34533,数字3重复超过2次,需要删除其中一个3,删除第一个3后获得最大数值4533 请返回经过删…...
雨水情测报与大坝安全监测系统
压电式雨量传感器产品概述传感器由上盖、外壳和下盖组成,壳体内部有压电片和电路板,可以固定在外径50mm立柱上和气象站横杆上。传感器采用冲击测量原理对单个雨滴重量进行测算,进而计算降雨量。雨滴在降落过程中受到雨滴重量和空气阻力的作用…...
抖音广告投放形式有哪些?新品牌进入抖音怎么建立口碑
坐拥5亿用户的抖音平台,已经成为各大品牌的兵家必争之地。想要在这块宣传的“高地”,做出声量,就必须了解抖音广告投放形式有哪些。这里整理的这份抖音广告投放指南,你一定不能错过。一、抖音为何如此牛想要弄清楚抖音广告的投放形…...
Beefxss使用教程图文教程(超详细)
「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 Beefxss一、首次使用二、修改账号密码三、自带练习页面四、简单使用五、工具界面介绍六、功能演示1、网页重定向2、社工弹窗3、功能颜色标识…...
【Python学习笔记】35.Python3 CGI编程(2)
前言 本章继续介绍Python的CGI编程。 通过CGI程序传递checkbox数据 checkbox用于提交一个或者多个选项数据,HTML代码如下: 实例 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>csdn教程(csd…...
博客等级说明
CSDN 博客等级是按照用户的博客积分数量进行的设定,为 Lv1 至 Lv10 共 10 个等级,不同的等级创作者可以享受到不同的权益待遇。例如,皮肤奖励、自定义域名、客服优先处理、自定义文章标签等特权。您需要提高博客积分进一步提升等级࿰…...
STL——容器适配器、deque
一、容器适配器 1.适配器 适配器是一种设计模式(设计模式是一套被反复使用的、多数人所知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。 2.STL标准库中stack和queue的底层结构 stack…...
VBA数组和Excel工作表数据传递
本文介绍如何利用 VBA 的数组(Array) 来提高 Excel 单元格和外部数据传输的性能。如果数量比较大,通过 Array 来传输数据比直接操作单元格要快若干倍。 将 Range 的数据写入 VBA Array 将 Range 数据写入 VBA 的数组非常简单。下面的例子演示了用法&am…...
PyQt5保姆级入门教程——从安装到使用
目录 Part1:安装PyQt5 Part 2:PyCharm配置PyQt5 Part 3:PyQt5设计界面介绍 Part 4:PyQt5设计UI 今天看了多个大佬的教程,总算是把PyQt5开发弄好了,每个部分都要看几个人的十分不方便,我十分…...
1.6 epoll实战使用
文章目录1、连接池2、epoll两种工作模式2.1、LT模式2.2、ET模式3、后端开发面试题4、epoll验证1、连接池 将每一个套接字和一块内存进行绑定,连接池就是一个结构体数组,通过链表来维护一个空闲连接。 1、ngx_get_connection(int fd)从空闲链表取一个空闲…...
JDK定时、Spring定时、时间轮定时小结
Timer使用一个线程,一个小根堆。线程执行根上的任务,小根堆会根据执行时间戳重新调整,根上的任务是下一个执行的任务。 DelayedQueue维护一个优先级队列,本质也是一个数组方式的堆。任务生成时也有时间戳,只提供存储。…...
关于cFosSpeed如何配置
cFosSpeed配置一、检查Calibration Done情况二、优化Ping时间和线路校准三、测网速四、cFosSpeed控制台五、配置参数一、检查Calibration Done情况 安装完毕,激活成功后。 右键------>选项------>设置, 打开适配器信息,查看Calibra…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技
无需布线的革命:电力载波技术赋能楼宇自控系统 在楼宇自动化领域,传统控制系统依赖复杂的专用通信线路,不仅施工成本高昂,后期维护和扩展也极为不便。电力载波技术(PLC)的突破性应用,彻底改变了…...
PostgreSQL 与 SQL 基础:为 Fast API 打下数据基础
在构建任何动态、数据驱动的Web API时,一个稳定高效的数据存储方案是不可或缺的。对于使用Python FastAPI的开发者来说,深入理解关系型数据库的工作原理、掌握SQL这门与数据库“对话”的语言,以及学会如何在Python中操作数据库,是…...
