群的定义及性质
群的定义
设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为独异点,若 G G G中每个元素关于 ⋅ \cdot ⋅都是可逆的,则称 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为群
由于群中结合律成立,每个元素的逆元是唯一的
若群 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩中的二元运算 ⋅ \cdot ⋅是可交换的,则称 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为可交换群,也称阿贝尔群
群的判定
定理1:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩为半群,若
(1)有左单位元,即 ∃ e l ∈ G \exists e_l\in G ∃el∈G使 ∀ a ∈ G , e l ⋅ a = a \forall a \in G, e_l \cdot a = a ∀a∈G,el⋅a=a
(2)每个元素有左逆元,即 ∀ a ∈ G , ∃ a l ∈ G \forall a \in G, \exists a_l \in G ∀a∈G,∃al∈G,使 a l ⋅ a = e l a_l \cdot a=e_l al⋅a=el则 < G , ⋅ > \left<G, \cdot \right> ⟨G,⋅⟩是群
证明:因为 a l ∈ G a_l \in G al∈G,所以 ∃ a ′ ⋅ a l = e l \exists a^{\prime} \cdot a_l = e_l ∃a′⋅al=el,于是
a ⋅ a l = e l ⋅ ( a ⋅ a l ) = ( a ′ ⋅ a l ) ⋅ ( a ⋅ a l ) = a ′ ⋅ ( a l ⋅ a ) ⋅ a l = a ′ ⋅ e l ⋅ a l = a ′ ⋅ ( e l ⋅ a l ) = a ′ ⋅ a l = e l \begin{aligned} a \cdot a_l &=e_l\cdot \left(a \cdot a_l\right)\\ &=\left(a^{\prime} \cdot a_l \right) \cdot \left(a \cdot a_l\right)\\ &=a^{\prime} \cdot \left(a_l\cdot a\right)\cdot a_l\\ &=a^{\prime} \cdot e_l \cdot a_l \\ &=a^{\prime}\cdot\left(e_l\cdot a_l\right)\\ &=a^{\prime} \cdot a_l\\ &=e_l \end{aligned} a⋅al=el⋅(a⋅al)=(a′⋅al)⋅(a⋅al)=a′⋅(al⋅a)⋅al=a′⋅el⋅al=a′⋅(el⋅al)=a′⋅al=el
因此 a l a_l al也是 a a a的右逆元,进而 a a a可逆
∀ a ∈ G \forall a \in G ∀a∈G
a ⋅ e l = a ⋅ ( a l ⋅ a ) = ( a ⋅ a l ) ⋅ a = e l ⋅ a = a a\cdot e_l = a\cdot\left(a_l\cdot a\right) = \left(a\cdot a_l\right) \cdot a = e_l \cdot a = a a⋅el=a⋅(al⋅a)=(a⋅al)⋅a=el⋅a=a
因此 e l e_l el是单位元
因此 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群
将本定理中的左同时改成右也成立,但是一左一右不一定
定理2:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是半群,若 ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G,方程 a ⋅ x = b a\cdot x=b a⋅x=b和 y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中都有接,则 < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
证明:
(1)取 a ∈ G a\in G a∈G设 e l e_l el为 y ⋅ a = a y\cdot a=a y⋅a=a的一个解, ∀ b ∈ G \forall b \in G ∀b∈G,令 c c c为 a ⋅ x = b a\cdot x=b a⋅x=b的一个解,则
e l ⋅ b = e l ⋅ ( a ⋅ c ) = ( e l ⋅ a ) ⋅ c = a ⋅ c = b e_l \cdot b = e_l\cdot \left(a\cdot c\right)=\left(e_l\cdot a\right) \cdot c = a\cdot c = b el⋅b=el⋅(a⋅c)=(el⋅a)⋅c=a⋅c=b
故 e l e_l el是左单位元
(2) ∀ a ∈ G \forall a \in G ∀a∈G,令 a l a_l al为 y ⋅ a = e l y\cdot a = e_l y⋅a=el的一个解,则 a l ⋅ a = e l a_l\cdot a = e_l al⋅a=el
由定理1, < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
定理3:设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是有限半群,若 G G G中消去律成立,则 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群
证明:
设 G = { a 1 , a 2 , ⋯ , a n } G = \left\{a_1,a_2,\cdots, a_n\right\} G={a1,a2,⋯,an}
∀ a , b ∈ G \forall a,b \in G ∀a,b∈G
作 G ′ = { a ⋅ a 1 , a ⋅ a 2 , ⋯ , a ⋅ a n } G^{\prime} = \left\{a\cdot a_1, a\cdot a_2,\cdots, a\cdot a_n\right\} G′={a⋅a1,a⋅a2,⋯,a⋅an}, G ′ ⊆ G G^{\prime} \subseteq G G′⊆G
因为消去律成立,若 i ≠ j i \neq j i=j,则 a ⋅ a i ≠ a ⋅ a j a\cdot a_i \neq a \cdot a_j a⋅ai=a⋅aj
因此 ∣ G ′ ∣ = G \left|G^{\prime} \right| = G ∣G′∣=G,则 G ′ = G G^{\prime} = G G′=G
因为 b ∈ G b \in G b∈G,有 b ∈ G p r i m e b\in G^{prime} b∈Gprime
即 ∃ k ∈ N \exists k \in \mathbb{N} ∃k∈N,使得 a ⋅ a k = b a\cdot a_k=b a⋅ak=b,所以 a k ∈ G a_k \in G ak∈G是方程 a ⋅ x = b a\cdot x=b a⋅x=b的解
同理, ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G, y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中有解
由定理2, < G , ⋅ > \left<G,\cdot \right> ⟨G,⋅⟩是群
群的性质
设 < G , ⋅ > \left<G, \cdot\right> ⟨G,⋅⟩是群,则
(1) ∀ a , b ∈ G , ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \forall a,b \in G, \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} ∀a,b∈G,(a⋅b)−1=b−1⋅a−1;
(2) ∀ a , b ∈ G \forall a,b\in G ∀a,b∈G,方程 a ⋅ x = b a\cdot x=b a⋅x=b和 y ⋅ a = b y\cdot a=b y⋅a=b在 G G G中有唯一解;
(3) G G G中消去律成立
证明:
(1)
因为 ( b − 1 ⋅ a − 1 ) ⋅ ( a ⋅ b ) = e \left(b^{-1}\cdot a^{-1}\right) \cdot \left(a\cdot b\right) = e (b−1⋅a−1)⋅(a⋅b)=e
并且 ( a ⋅ b ) ⋅ ( b − 1 ⋅ a − 1 ) = e \left(a\cdot b\right)\cdot \left(b^{-1}\cdot a^{-1}\right) = e (a⋅b)⋅(b−1⋅a−1)=e
所以 ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} (a⋅b)−1=b−1⋅a−1
(2) a ⋅ ( a − 1 ⋅ b ) = b a\cdot\left(a^{-1}\cdot b\right) = b a⋅(a−1⋅b)=b所以 a − 1 ⋅ b a^{-1}\cdot b a−1⋅b是方程 a ⋅ x = b a\cdot x=b a⋅x=b在 G G G中的解
若 c c c也是 a ⋅ x = b a\cdot x = b a⋅x=b在 G G G中的解,即 a ⋅ c = b a\cdot c = b a⋅c=b,则
c = e ⋅ c = ( a − 1 ⋅ a ) ⋅ c = a − 1 ⋅ ( a ⋅ c ) = a − 1 ⋅ b c = e\cdot c = \left(a^{-1}\cdot a\right)\cdot c=a^{-1}\cdot \left(a\cdot c\right) = a^{-1}\cdot b c=e⋅c=(a−1⋅a)⋅c=a−1⋅(a⋅c)=a−1⋅b
同理 y ⋅ a = b y\cdot a = b y⋅a=b在 G G G中由唯一解
(3) G G G中每个元素都是可逆的,又因为可逆元都是可约元,故 G G G中消去律成立
元素的阶
设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群, a ∈ G a\in G a∈G, a a a的整数次幂可归纳定义为:
(1) a 0 = e a^{0}=e a0=e
(2) a n + 1 = a n ⋅ a , n ∈ N a^{n+1}=a^{n} \cdot a, n\in \mathbb{N} an+1=an⋅a,n∈N
(3) a − n = ( a − 1 ) n , n ∈ I + a^{-n} = \left(a^{-1}\right)^{n} , n\in \mathbb{I}_+ a−n=(a−1)n,n∈I+
容易证明 ∀ m , n ∈ I , a m ⋅ a n = a m + n , ( a m ) n = a m n \forall m,n\in\mathbb{I}, a^{m}\cdot a^n=a^{m+n},\left(a^m\right)^n=a^{mn} ∀m,n∈I,am⋅an=am+n,(am)n=amn
定义:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩是群, a ∈ G a\in G a∈G,若 ∀ n ∈ I \forall n \in \mathbb{I} ∀n∈I, a n ≠ e a^{n}\neq e an=e则称 a a a的阶是无限的;
否则称使 a n = e a^{n}=e an=e的最小正整数 n n n为 a a a的阶
a a a的阶也称 a a a的周期,常用 ∣ a ∣ \left|a\right| ∣a∣表示
显然单位元使群中阶为 1 1 1的唯一元素
定理1:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩使群, a ∈ G a\in G a∈G,且 ∣ a ∣ = n \left|a\right| = n ∣a∣=n,则 a k = e a^k = e ak=e当且仅当 n ∣ k n\mid k n∣k
证明:
充分性:若 n ∣ k n\mid k n∣k,则 ∃ q ∈ I \exists q\in \mathbb{I} ∃q∈I,使 k = q n k=qn k=qn,则
a k = a q n = ( a n ) q = e q = e a^k =a^{qn} = \left(a^n\right) ^q = e^q =e ak=aqn=(an)q=eq=e
必要性:若 a k = e a^k=e ak=e,设 k = q n + r , 0 ≤ r < n k = qn + r, 0\le r < n k=qn+r,0≤r<n,则
a r = a k − q n = a k ⋅ ( a n ) − q = e ⋅ ( e ) − q = e a^r = a^{k-qn} = a^k \cdot \left(a^n\right)^{-q}=e\cdot \left(e\right)^{-q} = e ar=ak−qn=ak⋅(an)−q=e⋅(e)−q=e
但 n n n使使 a n = e a^n=e an=e的最小正整数,所以 r = 0 r=0 r=0, k = q n k=qn k=qn,故 n ∣ k n\mid k n∣k
定理2:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩使群, a ∈ G a\in G a∈G,且 ∣ a ∣ = n , k ∈ I \left|a\right|=n, k\in \mathbb{I} ∣a∣=n,k∈I
则 ∣ a k ∣ = n ( k , n ) \left|a^k\right| = \frac{n}{\left(k,n\right)} ak =(k,n)n,特别地, ∣ a − 1 ∣ = ∣ a ∣ \left|a^{-1}\right|=\left|a\right| a−1 =∣a∣
证明:设 ∣ a k ∣ = m \left|a^k\right|=m ak =m,则 a k m = e a^{km}=e akm=e,由定理1, n ∣ k m n\mid km n∣km,所以
n ( k , n ) ∣ k ( k , n ) m \frac{n}{\left(k,n\right)}\mid \frac{k}{\left(k,n\right)}m (k,n)n∣(k,n)km
而 n ( k , n ) \frac{n}{\left(k,n\right)} (k,n)n与 k ( k , n ) \frac{k}{\left(k,n\right)} (k,n)k互质,故 n ( k , n ) ∣ m \frac{n}{\left(k,n\right)}\mid m (k,n)n∣m,又因为
( a k ) n ( k , n ) = ( a n ) k ( k , n ) = e \left(a^k\right)^{\frac{n}{\left(k,n\right)}}=\left(a^n\right)^{\frac{k}{\left(k,n\right)}}=e (ak)(k,n)n=(an)(k,n)k=e
所以 m ∣ n ( k , n ) m\mid \frac{n}{\left(k,n\right)} m∣(k,n)n,而 m , n ( k , n ) ∈ I + m,\frac{n}{\left(k,n\right)}\in \mathbb{I}_+ m,(k,n)n∈I+,故 m = n ( k , n ) m=\frac{n}{\left(k,n\right)} m=(k,n)n
定理3:设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为有限群, ∣ G ∣ = n \left|G\right|=n ∣G∣=n,则 ∀ a ∈ G , ∣ a ∣ ≤ n \forall a\in G,\left|a\right|\le n ∀a∈G,∣a∣≤n
证明: ∀ a ∈ G , a , a 2 , ⋯ , a n + 1 \forall a\in G, a,a^2,\cdots, a^{n+1} ∀a∈G,a,a2,⋯,an+1中必有两个相同元,设为 a i = a j a^{i}=a^{j} ai=aj,其中 1 ≤ i < j ≤ n + 1 1\le i < j \le n+1 1≤i<j≤n+1,
则 a j − i = e a^{j-i}=e aj−i=e,故 ∣ a ∣ ≤ j − i ≤ n \left|a\right|\le j-i\le n ∣a∣≤j−i≤n
参考:
离散数学(刘玉珍)
相关文章:
群的定义及性质
群的定义 设 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为独异点,若 G G G中每个元素关于 ⋅ \cdot ⋅都是可逆的,则称 < G , ⋅ > \left<G,\cdot\right> ⟨G,⋅⟩为群 由于群中结合律成立,每个元素的逆元是唯一的 …...
mac电脑git clone项目时报错证书过期和权限被拒绝
mac电脑使用git clone命令克隆项目时,一开始一直提示证书过期 SSL certificate problem: certificate has expired 执行以下代码关掉验证后,解决了这个问题 找到git目录 Git\git-cmd输入命令跳转到bin目录,cd bin输入命令运行git.exe执行关…...
【AIGC】Photoshop AI Beta版本安装使用(永久免费)
AIGC 大爆发 Adobe近日宣布,Photoshop(测试版)应用程序发布了生成式AI绘图,这是世界上第一个创意和设计工作流程的副驾驶,为用户提供了一种神奇的新工作方式。生成式AI绘图由Adobe Firefly提供支持,Adobe的…...
01 云原生生态系统解读
云计算的技术革命 互联网时代的历程 云计算到底是什么 云计算历程 云平台的优缺点 优势 稳定性:云平台大量资源,分布式集群部署,保障服务永不宕机,几个9弹性扩展:按需索取,一键秒级开通需要的资源安全性&…...
Java——Java易错选择题复习(2)(计算机网络)
1. 下面关于源端口地址和目标端口地址的描述中,正确的是( ) A. 在TCP/UDP传输段中,源端口地址和目的端口地址是不能相同的 B. 在TCP/UDP传输段中,源端口地址和目的端口地址必须是相同的 C. 在TCP/UDP传输段中ÿ…...
【HTML5系列教程】
《HTML5系列教程》目录大纲: 介绍 内容包括HTML简介、服务器的概念、B/S、C/S软件架构、前端与后端的开发内容、HTML发展历程、浏览器内核介绍、Web标准、WebStorm工具的使用、WebStorm常用快捷键、HTML常用标签 如:文本标签(span)、排版标签(div/p/h…...
二、电压源、电流源、受控源
点我回到目录 目录 理想电压源 理想电流源 受控源 电流源做功问题 电压源做功问题 理想电压源 •定义:两端电压保持定值或一定的时间函数,且电压值与流过它的电流i无关 •特点:理想电压源两端的电压由本身决定,与外电路无关…...
骨传导是哪个意思,推荐几款性能优的骨传导耳机
骨传导耳机是通过头部骨迷路传递声音,而不是直接通过耳膜的振动来传递声音。与传统的入耳式耳机相比,骨传导耳机不会堵耳朵,在跑步、骑车等运动时可以更好的接收外界环境音,保护听力,提升安全性。此外,骨…...
利用Taro打造灵活的移动App架构
最近公司的一些项目需要跨端框架,技术老大选了Taro,实践了一段时间下来,愈发觉得Taro是个好东西,所以在本篇文章中稍微介绍下。 什么是Taro? Taro(或称为Taro框架)是一种用于构建跨平台应用程…...
(转载)基于模拟退火算法的TSP问题求解(matlab实现)
1 理论基础 1.1 模拟退火算法基本原理 模拟退火(simulated annealing,SA)算法的思想最早是由Metropolis等提出的。其出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成&am…...
splitpcap 使用说明
背景 当PCAP原始文件特别巨大的时候,整个文件直接载入内存是相当耗时的,于是一个简单的想法是将大的PCAP切分成若干小PCAP。对于这个任务,现有工具splitcap是可以完成的。无论是按照主机对、还是按照五元组信息切分,splitcap都会…...
配置docker阿里云镜像加速
默认情况下docker安装镜像文件是从docker官方的镜像中心下载:https://hub.docker.com/ , 有时速度慢,可以通过配置docker阿里云镜像来加速,配置后,就从国内阿里云下载。 注册阿里云用户,登录->工作台-&g…...
《消息队列高手课》课程学习笔记(八)
如何实现高性能的异步网络传输? **异步与同步模型最大的区别是,同步模型会阻塞线程等待资源,而异步模型不会阻塞线程,它是等资源准备好后,再通知业务代码来完成后续的资源处理逻辑。**这种异步设计的方法,…...
DC电源模块在工业自动化的应用
BOSHIDA DC电源模块在工业自动化的应用 随着自动化技术的不断发展,DC电源模块已成为工业控制系统中不可或缺的一个组成部分。在许多自动化系统中,如机器人、控制器、PLC等,都需要使用到直流电源模块来提供稳定可靠的电源,以确保系…...
Java容器-集合
目录 1.Java容器概述 2.集合框架 3.Collection接口中的方法使用 4.iterator() 5.List接口 2.ArrayList、LinkedList、Vector相同点 3.不同点 1.ArrayList 2.LinkedList 3.Vector 4.Vector源码分析 5.ArrayList源码分析 6.LinkedList源码分析 6.List中的常用方法 …...
总结890
学习目标: 月目标:6月(线性代数强化9讲2遍,背诵15篇短文,考研核心词过三遍) 周目标:线性代数强化3讲,英语背3篇文章并回诵,检测 每日必复习(5分钟ÿ…...
2023年5月青少年机器人技术等级考试理论综合试卷(二级)
青少年机器人技术等级考试理论综合试卷(二级)2023.6 分数: 100 题数: 45 一、 单选题(共 30 题, 共 60 分) 1.下图中的凸轮机构使用了摆动型从动件的是? ( ) A.a B.b C.c D.d 试题类…...
2023CCPC河南省赛 VP记录
感觉现在的xcpc,风格越来越像CF,不是很喜欢,还是更喜欢多点算法题的比赛 VP银了,VP银也是银 感觉省赛都是思维题,几乎没有算法题,感觉像打了场大型的CF B题很简单没开出来,一直搞到最后&…...
【ECCV2022】DaViT: Dual Attention Vision Transformers
DaViT: Dual Attention Vision Transformers, ECCV2022 解读:【ECCV2022】DaViT: Dual Attention Vision Transformers - 高峰OUC - 博客园 (cnblogs.com) DaViT:双注意力Vision Transformer - 知乎 (zhihu.com) DaViT: Dual Attention Vision Trans…...
Apache 配置与应用
Apache 配置与应用 一、构建虚拟 Web 主机httpd服务支持的虚拟主机类型包括以下三种: 二、基于域名的虚拟主机1.为虚拟主机提供域名解析方法一:部署DNS域名解析服务器 来提供域名解析方法二:在/etc/hosts 文件中临时配置域名与IP地址的映射关…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
