(转载)基于模拟退火算法的TSP问题求解(matlab实现)
1 理论基础
1.1 模拟退火算法基本原理
1.2 TSP问题介绍
2 案例背景
2.1 问题描述
2.2 解题思路及步骤
3 MATLAB程序实现
3.1 计算距离矩阵
function D=Distanse(a)
%% 计算两两城市之间的距离
%输入 a 各城市的位置坐标
%输出 D 两两城市之间的距离
row=size(a,1);
D=zeros(row,row);
for i=1:rowfor j=i+1:rowD(i,j)=((a(i,1)-a(j,1))^2+(a(i,2)-a(j,2))^2)^0.5;D(j,i)=D(i,j);end
end
3.2 画路线轨迹图
function DrawPath(Chrom,X)
%% 画路径函数
%输入
% Chrom 待画路径
% X 各城市坐标位置
R=[Chrom(1,:) Chrom(1,1)]; %一个随机解(个体)
figure;
hold on
plot(X(:,1),X(:,2),'o','color',[0.5,0.5,0.5])
plot(X(Chrom(1,1),1),X(Chrom(1,1),2),'rv','MarkerSize',20)
for i=1:size(X,1)text(X(i,1)+0.05,X(i,2)+0.05,num2str(i),'color',[1,0,0]);
end
A=X(R,:);
row=size(A,1);
for i=2:row[arrowx,arrowy] = dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2));%坐标转换annotation('textarrow',arrowx,arrowy,'HeadWidth',8,'color',[0,0,1]);
end
hold off
xlabel('横坐标')
ylabel('纵坐标')
title('轨迹图')
box on
3.3 输出路径函数
function p=OutputPath(R)
%% 输出路径函数
%输入:R 路径
R=[R,R(1)];
N=length(R);
p=num2str(R(1));
for i=2:Np=[p,'—>',num2str(R(i))];
end
disp(p)
3.4 可行解路线长度函数
function len=PathLength(D,Chrom)
%% 计算各个体的路径长度
% 输入:
% D 两两城市之间的距离
% Chrom 个体的轨迹
[row,col]=size(D);
NIND=size(Chrom,1);
len=zeros(NIND,1);
for i=1:NINDp=[Chrom(i,:) Chrom(i,1)];i1=p(1:end-1);i2=p(2:end);len(i,1)=sum(D((i1-1)*col+i2));
end
3.5 生成新解
function S2=NewAnswer(S1)
%% 输入
% S1:当前解
%% 输出
% S2:新解
N=length(S1);
S2=S1;
a=round(rand(1,2)*(N-1)+1); %产生两个随机位置 用来交换
W=S2(a(1));
S2(a(1))=S2(a(2));
S2(a(2))=W; %得到一个新路线
3.6Metropolis准则函数
function [S,R]=Metropolis(S1,S2,D,T)
%% 输入
% S1: 当前解
% S2: 新解
% D: 距离矩阵(两两城市的之间的距离)
% T: 当前温度
%% 输出
% S: 下一个当前解
% R: 下一个当前解的路线距离
%%
R1=PathLength(D,S1); %计算路线长度
N=length(S1); %得到城市的个数R2=PathLength(D,S2); %计算路线长度
dC=R2-R1; %计算能力之差
if dC<0 %如果能力降低 接受新路线S=S2;R=R2;
elseif exp(-dC/T)>=rand %以exp(-dC/T)概率接受新路线S=S2;R=R2;
else %不接受新路线S=S1;R=R1;
end
3.7 主函数
主函数代码如下:
clc;
clear;
close all;
%%
tic
T0=1000; % 初始温度
Tend=1e-3; % 终止温度
L=500; % 各温度下的迭代次数(链长)
q=0.9; %降温速率%% 加载数据
load CityPosition1;
%%
D=Distanse(X); %计算距离矩阵
N=size(D,1); %城市的个数
%% 初始解
S1=randperm(N); %随机产生一个初始路线%% 画出随机解的路径图
DrawPath(S1,X)
pause(0.0001)
%% 输出随机解的路径和总距离
disp('初始种群中的一个随机值:')
OutputPath(S1);
Rlength=PathLength(D,S1);
disp(['总距离:',num2str(Rlength)]);%% 计算迭代的次数Time
Time=ceil(double(solve(['1000*(0.9)^x=',num2str(Tend)])));
count=0; %迭代计数
Obj=zeros(Time,1); %目标值矩阵初始化
track=zeros(Time,N); %每代的最优路线矩阵初始化
%% 迭代
while T0>Tendcount=count+1; %更新迭代次数temp=zeros(L,N+1);for k=1:L%% 产生新解S2=NewAnswer(S1);%% Metropolis法则判断是否接受新解[S1,R]=Metropolis(S1,S2,D,T0); %Metropolis 抽样算法temp(k,:)=[S1 R]; %记录下一路线的及其路程end%% 记录每次迭代过程的最优路线[d0,index]=min(temp(:,end)); %找出当前温度下最优路线if count==1 || d0<Obj(count-1)Obj(count)=d0; %如果当前温度下最优路程小于上一路程则记录当前路程elseObj(count)=Obj(count-1);%如果当前温度下最优路程大于上一路程则记录上一路程endtrack(count,:)=temp(index,1:end-1); %记录当前温度的最优路线T0=q*T0; %降温fprintf(1,'%d\n',count) %输出当前迭代次数
end
%% 优化过程迭代图
figure
plot(1:count,Obj)
xlabel('迭代次数')
ylabel('距离')
title('优化过程')%% 最优解的路径图
DrawPath(track(end,:),X)%% 输出最优解的路线和总距离
disp('最优解:')
S=track(end,:);
p=OutputPath(S);
disp(['总距离:',num2str(PathLength(D,S))]);
disp('-------------------------------------------------------------')
toc
4 结果分析
最优解为:
9—>11—>1—>8—>13—>7—>12—>6—>5—>4—>3—>14—>2—>10—>9
总距离:29.6889
X=rand(N,2)*10;
即可得到如下结果:优化前的轨迹如图5所示,优化后的轨迹如图6所示,优化迭代过程如图7所示。
初始种群中的个随机解:
22—>31—>50—>37—>11—>3—>23—>46—>19—>28—>48—>1—>47—>12—>45—>42—>40—>39—>33—>34—>18—>41—>25—>13—>49—>27—>36—>29—>16—>6—>2—>14—>21—>5—>24—>32—>38—>43—>7—>4—>26—>8—>9—>20—>44—>35—>15—>30—>17—>10—>22
总距离:271.7719
最优解:
33—>45—>13—>50—>20—>26—>25—>15—>2—>17—>18—>8—>41—>3—>6—>34—>38—>47—>14—>42—>44—>7—>36—>22—>39—>4—>37—>46—>1—>5—>30—>43—>27—>31—>32—>21—>9—>11—>29—>23—>40—>49—>28—>19—>48—>12—>35—>16—>24—>10—>33
总距离:71.3071
5 延伸阅读
5.1 模拟退火算法的改进
5.2 算法的局限性
相关文章:
(转载)基于模拟退火算法的TSP问题求解(matlab实现)
1 理论基础 1.1 模拟退火算法基本原理 模拟退火(simulated annealing,SA)算法的思想最早是由Metropolis等提出的。其出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成&am…...
splitpcap 使用说明
背景 当PCAP原始文件特别巨大的时候,整个文件直接载入内存是相当耗时的,于是一个简单的想法是将大的PCAP切分成若干小PCAP。对于这个任务,现有工具splitcap是可以完成的。无论是按照主机对、还是按照五元组信息切分,splitcap都会…...
配置docker阿里云镜像加速
默认情况下docker安装镜像文件是从docker官方的镜像中心下载:https://hub.docker.com/ , 有时速度慢,可以通过配置docker阿里云镜像来加速,配置后,就从国内阿里云下载。 注册阿里云用户,登录->工作台-&g…...
《消息队列高手课》课程学习笔记(八)
如何实现高性能的异步网络传输? **异步与同步模型最大的区别是,同步模型会阻塞线程等待资源,而异步模型不会阻塞线程,它是等资源准备好后,再通知业务代码来完成后续的资源处理逻辑。**这种异步设计的方法,…...
DC电源模块在工业自动化的应用
BOSHIDA DC电源模块在工业自动化的应用 随着自动化技术的不断发展,DC电源模块已成为工业控制系统中不可或缺的一个组成部分。在许多自动化系统中,如机器人、控制器、PLC等,都需要使用到直流电源模块来提供稳定可靠的电源,以确保系…...
Java容器-集合
目录 1.Java容器概述 2.集合框架 3.Collection接口中的方法使用 4.iterator() 5.List接口 2.ArrayList、LinkedList、Vector相同点 3.不同点 1.ArrayList 2.LinkedList 3.Vector 4.Vector源码分析 5.ArrayList源码分析 6.LinkedList源码分析 6.List中的常用方法 …...
总结890
学习目标: 月目标:6月(线性代数强化9讲2遍,背诵15篇短文,考研核心词过三遍) 周目标:线性代数强化3讲,英语背3篇文章并回诵,检测 每日必复习(5分钟ÿ…...
2023年5月青少年机器人技术等级考试理论综合试卷(二级)
青少年机器人技术等级考试理论综合试卷(二级)2023.6 分数: 100 题数: 45 一、 单选题(共 30 题, 共 60 分) 1.下图中的凸轮机构使用了摆动型从动件的是? ( ) A.a B.b C.c D.d 试题类…...
2023CCPC河南省赛 VP记录
感觉现在的xcpc,风格越来越像CF,不是很喜欢,还是更喜欢多点算法题的比赛 VP银了,VP银也是银 感觉省赛都是思维题,几乎没有算法题,感觉像打了场大型的CF B题很简单没开出来,一直搞到最后&…...
【ECCV2022】DaViT: Dual Attention Vision Transformers
DaViT: Dual Attention Vision Transformers, ECCV2022 解读:【ECCV2022】DaViT: Dual Attention Vision Transformers - 高峰OUC - 博客园 (cnblogs.com) DaViT:双注意力Vision Transformer - 知乎 (zhihu.com) DaViT: Dual Attention Vision Trans…...
Apache 配置与应用
Apache 配置与应用 一、构建虚拟 Web 主机httpd服务支持的虚拟主机类型包括以下三种: 二、基于域名的虚拟主机1.为虚拟主机提供域名解析方法一:部署DNS域名解析服务器 来提供域名解析方法二:在/etc/hosts 文件中临时配置域名与IP地址的映射关…...
OpenGL 纹理
1.简介 纹理是一个2D图片(甚至也有1D和3D的纹理),它可以用来添加物体的细节;你可以想象纹理是一张绘有砖块的纸,无缝折叠贴合到你的3D的房子上,这样你的房子看起来就像有砖墙外表了。 为了能够把纹理映射(M…...
Jeston Orin Nnao 安装pytorch与torchvision环境
大家好,我是虎哥,Jeston Orin nano 8G模块,提供高达 40 TOPS 的 AI 算力,安装好了Jetpack5.1之后,我们需要配置一些支持环境,来为我们后续的深度学习开发提供支持。本章内容,我将主要围绕安装对…...
ROS:常用可视化工具的使用
目录 一、日志输出工具——rqt_console二、绘制数据曲线——rqt_plot三、图像渲染工具——rqt_image_view四、图形界面总接口——rqt五、Rviz六、Gazebo 一、日志输出工具——rqt_console 启动海龟键盘控制节点,打开日志输出工具 roscorerosrun turtlesim turtles…...
智能应用搭建平台——LCHub低代码表单 vs 流程表单 vs 仪表盘
1. LCHub低代码如何选择 「流程表单」:填报数据,并带有流程审批功能,适合报销、请假申请或其他工作流; 「表单」:填报数据,并带有数据协作功能,如修改、删除、导入、导出,并可以给不同的人不同的管理权限; 「仪表盘」:数据分析处理、结果展示功能,如数据汇总、趋…...
Mac下通过Docker安装ElasticSearch集群
1、安装ElasticSearch 使用docker直接获取es镜像,执行命令docker pull elasticsearch:7.7.0 执行完成后,执行docker images即可看到上一步拉取的镜像。 2、创建数据挂在目录,以及配置ElasticSearch集群配置文件 创建数据文件挂载目录 mkdir -…...
MySQL redo log、undo log、binlog
MySQL是一个广泛使用的关系型数据库管理系统,它通过一系列的日志来保证数据的一致性和持久性。在MySQL中,有三个重要的日志组件,它们分别是redo log(重做日志)、undo log(回滚日志)和binlog&…...
文件包含漏洞
一、原理解析。 开发人员通常会把可重复使用的函数写到单个文件中,在使用到某些函数时,可直接调用此文件,而无须再次编写,这种调用文件的过程被称为包含。 注意:对于开发人员来讲,文件包含很有用…...
Python 中的 F-Test
文章目录 F 统计量和 P 值方差(ANOVA) 分析中的 F 值 本篇文章介绍 F 统计、F 分布以及如何使用 Python 对数据执行 F-Test 测试。 F 统计量是在方差分析检验或回归分析后获得的数字,以确定两个总体的平均值是否存在显着差异。 它类似于 T 检验的 T 统计量…...
Docker网络模式
一、docker网络概述 1、docker网络实现的原理 Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP, 同时Docker网桥是 每个容器的…...
百度离线资源治理
作者 | 百度MEG离线优化团队 导读 近些年移动互联网的高速发展驱动了数据爆发式的增长,各大公司之间都在通过竞争获得更大的增长空间,大数据计算的效果直接影响到公司的发展,而这背后其实依赖庞大的算力及数据作为支撑,因此在满足…...
C++进阶之继承
文章目录 前言一、继承的概念及定义1.继承概念2.继承格式与访问限定符3.继承基类与派生类的访问关系变化4.总结 二、基类和派生类对象赋值转换基本概念与规则 三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员六、复杂的菱形继承及菱形虚拟继承七、…...
在 Transformers 中使用约束波束搜索引导文本生成
引言 本文假设读者已经熟悉文本生成领域波束搜索相关的背景知识,具体可参见博文 如何生成文本: 通过 Transformers 用不同的解码方法生成文本。 与普通的波束搜索不同,约束 波束搜索允许我们控制所生成的文本。这很有用,因为有时我们确切地知…...
Centos7更换OpenSSL版本
OpenSSL 1.1.0 用户应升级至 1.1.0aOpenSSL 1.0.2 用户应升级至 1.0.2iOpenSSL 1.0.1 用户应升级至 1.0.1u 查看openssl版本 openssl version -v选择升级版本 我的版本是OpenSSL 1.0.2系列,所以要升级1.0.2i https://www.openssl.org/source/old/1.0.2/openssl-…...
基于摄影测量的三维重建【终极指南】
我们生活的时代非常令人兴奋,如果你对 3D 东西感兴趣,更是如此。 我们有能力使用任何相机,从感兴趣的物体中捕捉一些图像数据,并在眨眼间将它们变成 3D 资产! 这种通过简单的数据采集阶段进行的 3D 重建过程是许多行业…...
配置ThreadPoolExecutor
ThreadPoolExecutor为一些Executor 提供了基本的实现,这些Executor 是由Executors中的newCachedThreadPool、newFixedThreadPool和newScheduledThreadExecutor 等工厂方法返回的。ThreadPoolExecutor是一个灵活的、稳定的线程池,允许进行各种定制。 如果默认的执行策略不能满足…...
Yolov5s算法从训练到部署
文章目录 PyTorch GPU环境搭建查看显卡CUDA版本Anaconda安装PyTorch环境安装PyCharm中验证 训练算法模型克隆Yolov5代码工程制作数据集划分训练集、验证集修改工程相关文件配置预训练权重文件配置数据文件配置模型文件配置 超参数配置 测试训练出来的算法模型 量化转换算法模型…...
分布式补充技术 01.AOP技术
01.AOP技术是对于面向对象编程(OOP)的补充。是按照OCP原则进行的编写,(ocp是修改模块权限不行,扩充可以) 02.写一个例子: 创建一个新的java项目,在main主启动类中,写如下代码。 package com.co…...
QT 多对一服务插件 CTK开发(五)
CTK在软件的开发过程中可以很好的降低复杂性、使用 CTK Plugin Framework 提供统一的框架来进行开发增加了复用性 将同一功能打包可以提供多个应用程序使用避免重复性工作、可以进行版本控制提供了良好的版本更新迭代需求、并且支持动态热拔插 动态更新、开发更加简单快捷 方便…...
[Windows]_[初级]_[创建目录和文件的名字注意事项]
场景 在开发Windows程序时,会出现目录生成了,但是函数无法在目录里创建文件,怎么回事?说明 在之前说过Windows上有些字符是不能作为文件名的[1],但是检查了下出问题的目录名没有非法字符,所以不是这个原因。 把文件的绝对路径打印出来就发现了问题,目录名后边带了空格,…...
建设工程资讯哪个网站好/百度首页网址
IDC报告显示,交换机市场近年来一直保持着较高的增长势头,到2009年市场规模有望达到15.1亿美元。交换机在企业网中占有重要的地位,通常是整个网络的核心所在,这一地位使它成为******和病毒肆虐的重点对象,为保障自身网络…...
做盗版小说网站能赚钱不/百度客服电话是多少
“要想保证皮带电子秤的精度,必须要对电子秤安装、调试的每一个步骤严格把关。”近期,安装维修中心副段长刘云多次叮嘱参与施工的电工段自动化班组职工。皮带电子秤依附于皮带运输机,它通过称重传感器感应皮带上物料的压力换算成皮带上物料的…...
亿唐网不做网站做品牌考试题/河南今日头条新闻
2021牛客暑期多校训练营3 Kuriyama Mirai and Exclusive Or 题目链接 题意 给定一个长度为n的数组a。 有q次操作,每次操作有两种类型: 给定一个区间[al,ar][a_l,a_r][al,ar],对区间内的数ai⊕x,i∈[l,r]a_i\oplus x,i\in […...
网站建设 自助建站/最近几天的新闻大事
关闭防火墙: 控制面板-〉防火墙-〉不启用防火墙-〉高级设置-〉域防火墙设置-〉关闭防火墙转载于:https://www.cnblogs.com/promise-7/archive/2013/04/26/3044224.html...
固定ip如何做网站服务器/100大看免费行情的软件
方法1: 重装了Mysql,在配置的时候,老是需要指示输入旧的Mysql的root用户的密码! 不然就会出现 Nt. 1045 的数据库错误。 只有强硬删除原来的数据文件了,一般的mysql的原来配置的文件都是在配置的程序目录下的,如 "…...
网站没有被百度收录/自动发外链工具
天玑800u采用7nm工艺打造, CPU由两颗2.4GHz的A76和6颗2.0GHz的Cortex-A55组成, GPU集成Mali-G57,独立APU,支持最高LPDDR4X-2133内存、UFS 2.1闪存等。 选天玑810还是天玑800u哪个强这些点很重要 http://www.adiannao.cn/7 天玑810 作为天玑8系列的新成员,天玑810比较…...